IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v288y2021ics0306261921001719.html
   My bibliography  Save this article

Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake

Author

Listed:
  • Mutschler, Robin
  • Rüdisüli, Martin
  • Heer, Philipp
  • Eggimann, Sven

Abstract

The planning of future energy policies and energy systems requires an understanding of the intricate relationships between climate change, technology uptake, population growth and building energy demand. Building cooling demand is expected to increase considerably in many parts of the world as the climate warms on average. In temperate climates, this increase is expected to be particularly large due to the increase in the number of days when cooling is required to maintain a comfortable indoor building temperature. We quantify the impact of climate change, cooling device uptake and population growth based on population-weighted climate models, population growth scenarios and measured thermal energy demand data for Switzerland. This study incorporates three climate development scenarios and we find for an extreme case, that up to 17.5 TWh cooling energy would be required by the middle of the 21st century compared to 3–5 TWh in more moderate cases. Heating energy demand is expected to decrease to around 20 TWh by mid-century, which is approximately one-third of the current Swiss building heating demand. The presented combined quantification of future cooling demands for Switzerland provides a set of benchmarked energy demands and highlights the critical role of air-conditioning technology uptake, which significantly contributes to future cooling demands. Pursuing alternative cooling strategies is therefore needed to limit cooling energy demand impacts on the future energy systems particularly in countries with temperate climates.

Suggested Citation

  • Mutschler, Robin & Rüdisüli, Martin & Heer, Philipp & Eggimann, Sven, 2021. "Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake," Applied Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001719
    DOI: 10.1016/j.apenergy.2021.116636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921001719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berger, Matthias & Worlitschek, Jörg, 2018. "A novel approach for estimating residential space heating demand," Energy, Elsevier, vol. 159(C), pages 294-301.
    2. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    3. Eggimann, Sven & Hall, Jim W. & Eyre, Nick, 2019. "A high-resolution spatio-temporal energy demand simulation to explore the potential of heating demand side management with large-scale heat pump diffusion," Applied Energy, Elsevier, vol. 236(C), pages 997-1010.
    4. Werner, Sven, 2016. "European space cooling demands," Energy, Elsevier, vol. 110(C), pages 148-156.
    5. van Hooff, T. & Blocken, B. & Timmermans, H.J.P. & Hensen, J.L.M., 2016. "Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building," Energy, Elsevier, vol. 94(C), pages 811-820.
    6. Eggimann, Sven & Usher, Will & Eyre, Nick & Hall, Jim W., 2020. "How weather affects energy demand variability in the transition towards sustainable heating," Energy, Elsevier, vol. 195(C).
    7. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric D. & Reyna, Janet, 2019. "Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change," Applied Energy, Elsevier, vol. 236(C), pages 1-9.
    8. Martin Rüdisüli & Sinan L. Teske & Urs Elber, 2019. "Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on the Swiss Electricity System," Energies, MDPI, vol. 12(12), pages 1-38, June.
    9. Hannu S. Laine & Jyri Salpakari & Erin E. Looney & Hele Savin & Ian Marius Peters & Tonio Buonassisi, 2019. "Meeting Global Cooling Demand with Photovoltaics during the 21st Century," Papers 1902.10080, arXiv.org.
    10. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    11. Jakubcionis, Mindaugas & Carlsson, Johan, 2018. "Estimation of European Union service sector space cooling potential," Energy Policy, Elsevier, vol. 113(C), pages 223-231.
    12. Papakostas, K. & Mavromatis, T. & Kyriakis, N., 2010. "Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece," Renewable Energy, Elsevier, vol. 35(7), pages 1376-1379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole D. Miranda & Jesus Lizana & Sarah N. Sparrow & Miriam Zachau-Walker & Peter A. G. Watson & David C. H. Wallom & Radhika Khosla & Malcolm McCulloch, 2023. "Change in cooling degree days with global mean temperature rise increasing from 1.5 °C to 2.0 °C," Nature Sustainability, Nature, vol. 6(11), pages 1326-1330, November.
    2. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    3. Ghafoori, Mahdi & Abdallah, Moatassem & Kim, Serena, 2023. "Electricity peak shaving for commercial buildings using machine learning and vehicle to building (V2B) system," Applied Energy, Elsevier, vol. 340(C).
    4. Sudati Nur Safiah & Rr. Retno Sugiharti & Rian Destiningsih & Putra Arif Budiman, 2021. "Dynamic Model for the Consumption of Electrical Energy in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 356-362.
    5. Wang, Bingqing & Li, Yongping & Huang, Guohe & Gao, Pangpang & Liu, Jing & Wen, Yizhuo, 2023. "Development of an integrated BLSVM-MFA method for analyzing renewable power-generation potential under climate change: A case study of Xiamen," Applied Energy, Elsevier, vol. 337(C).
    6. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    7. Olaf Boeckmann & Drin Marmullaku & Micha Schaefer, 2024. "Dynamic Modeling and Simulation of a Facade-Integrated Adsorption System for Solar Cooling of Lightweight Buildings," Energies, MDPI, vol. 17(7), pages 1-29, April.
    8. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    9. Michael Strobel & Uli Jakob & Wolfgang Streicher & Daniel Neyer, 2023. "Spatial Distribution of Future Demand for Space Cooling Applications and Potential of Solar Thermal Cooling Systems," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    10. Francesco Baldi & Enrico Genova & Alessandra Gugliandolo & Maria-Anna Segreto, 2022. "Mapping the Potential of High-Reflective Roof Coverings in Residential Buildings in Italy," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    11. Ayou, Dereje S. & Wardhana, Muhammad Fa'iq Vidi & Coronas, Alberto, 2023. "Performance analysis of a reversible water/LiBr absorption heat pump connected to district heating network in warm and cold climates," Energy, Elsevier, vol. 268(C).
    12. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    13. Samia Hamdane & Luís C. Pires & Pedro D. Gaspar & Pedro D. Silva, 2024. "Innovative Strategies for Thermal Energy Optimization and Renewable Energy Integration in Net-Zero-Energy Buildings: A Comprehensive Review," Energies, MDPI, vol. 17(22), pages 1-24, November.
    14. Mustafa Saglam & Catalina Spataru & Omer Ali Karaman, 2023. "Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms," Energies, MDPI, vol. 16(11), pages 1-23, June.
    15. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    16. De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2021. "Impact of weather data and climate change projections in the refurbishment design of residential buildings in cooling dominated climate," Applied Energy, Elsevier, vol. 303(C).
    17. Dawei Xia & Weien Xie & Jialiang Guo & Yukai Zou & Zhuotong Wu & Yini Fan, 2023. "Building Thermal and Energy Performance of Subtropical Terraced Houses under Future Climate Uncertainty," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    18. Geovo, Leonardo & Ri, Guilherme Dal & Kumar, Rahul & Verma, Sujit Kumar & Roberts, Justo J. & Mendiburu, Andrés Z., 2023. "Theoretical model for flat plate solar collectors operating with nanofluids: Case study for Porto Alegre, Brazil," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    2. Knittel, Tamara & Palmer-Wilson, Kevin & McPherson, Madeleine & Wild, Peter & Rowe, Andrew, 2024. "Heating electrification in cold climates: Invest in grid flexibility," Applied Energy, Elsevier, vol. 356(C).
    3. Eggimann, Sven & Usher, Will & Eyre, Nick & Hall, Jim W., 2020. "How weather affects energy demand variability in the transition towards sustainable heating," Energy, Elsevier, vol. 195(C).
    4. Patureau, Rémi & Tran, Cong Toan & Gavan, Valentin & Stabat, Pascal, 2021. "The new generation of District heating & cooling networks and their potential development in France," Energy, Elsevier, vol. 236(C).
    5. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    6. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
    7. Barth, Florian & Schüppler, Simon & Menberg, Kathrin & Blum, Philipp, 2023. "Estimating cooling capacities from aerial images using convolutional neural networks," Applied Energy, Elsevier, vol. 349(C).
    8. Jakubcionis, Mindaugas & Carlsson, Johan, 2018. "Estimation of European Union service sector space cooling potential," Energy Policy, Elsevier, vol. 113(C), pages 223-231.
    9. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Luigi Bottecchia & Eric Wilczynski, 2022. "Space Cooling Market in Europe: Assessment of the Final Energy Consumption for the Year 2016," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    10. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
    11. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
    12. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    13. Jones, Andrew & Nock, Destenie & Samaras, Constantine & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Climate change impacts on future residential electricity consumption and energy burden: A case study in Phoenix, Arizona," Energy Policy, Elsevier, vol. 183(C).
    14. Saeid Charani Shandiz & Alice Denarie & Gabriele Cassetti & Marco Calderoni & Antoine Frein & Mario Motta, 2019. "A Simplified Methodology for Existing Tertiary Buildings’ Cooling Energy Need Estimation at District Level: A Feasibility Study of a District Cooling System in Marrakech," Energies, MDPI, vol. 12(5), pages 1-20, March.
    15. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
    16. Park, Somin & Shim, Jisoo & Song, Doosam, 2021. "Issues in calculation of balance-point temperatures for heating degree-days for the development of building-energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Hoofar Hemmatabady & Julian Formhals & Bastian Welsch & Daniel Otto Schulte & Ingo Sass, 2020. "Optimized Layouts of Borehole Thermal Energy Storage Systems in 4th Generation Grids," Energies, MDPI, vol. 13(17), pages 1-26, August.
    18. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    19. Jakubcionis, Mindaugas & Carlsson, Johan, 2017. "Estimation of European Union residential sector space cooling potential," Energy Policy, Elsevier, vol. 101(C), pages 225-235.
    20. Nikola Pesic & Jaime Roset Calzada & Adrian Muros Alcojor, 2018. "Assessment of Advanced Natural Ventilation Space Cooling Potential across Southern European Coastal Region," Sustainability, MDPI, vol. 10(9), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.