IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019381.html
   My bibliography  Save this article

Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050

Author

Listed:
  • Ram, Manish
  • Osorio-Aravena, Juan Carlos
  • Aghahosseini, Arman
  • Bogdanov, Dmitrii
  • Breyer, Christian

Abstract

Driven by climate mitigation goals countries around the world are prioritising low-cost renewables for economic growth and recovery from the aftermath of the global pandemic. It is quite clear that sustainable technology choices result in broader socioeconomic benefits, as is shown by countries that have been early movers in transitioning their energy sectors towards higher shares of renewables. There is growing interest in better understanding the direct impact on employment by energy transitions with concerns over jobs lost in the conventional energy sectors, which will be crucial in informing decision making around the world. This research focuses on the net employment impacts of an accelerated uptake of renewable energy that envisages the world deriving 100 % of its energy from renewable sources by 2050, compatible with the ambitious goals of the Paris Agreement. Direct energy jobs associated with the power, heat, transport, and desalination sectors increase substantially from about 57 million in 2020 to nearly 134 million by 2050. Value chains in renewables and sustainable technologies are found to be more labour intensive than extractive fossil fuels. The results indicate that a global energy transition will have positive impacts on future stability and growth of economies around the world.

Suggested Citation

  • Ram, Manish & Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019381
    DOI: 10.1016/j.energy.2021.121690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cameron, Lachlan & van der Zwaan, Bob, 2015. "Employment factors for wind and solar energy technologies: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 160-172.
    2. Nasirov, Shahriyar & Girard, Aymeric & Peña, Cristobal & Salazar, Felipe & Simon, François, 2021. "Expansion of renewable energy in Chile: Analysis of the effects on employment," Energy, Elsevier, vol. 226(C).
    3. Lund, H. & Hvelplund, F. & Nunthavorakarn, S., 2003. "Feasibility of a 1400 MW coal-fired power-plant in Thailand," Applied Energy, Elsevier, vol. 76(1-3), pages 55-64, September.
    4. Fortes, Patrícia & Alvarenga, António & Seixas, Júlia & Rodrigues, Sofia, 2015. "Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 161-178.
    5. Sven Teske & Thomas Pregger & Sonja Simon & Tobias Naegler & Johannes Pagenkopf & Özcan Deniz & Bent van den Adel & Kate Dooley & Malte Meinshausen, 2021. "It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways," Energies, MDPI, vol. 14(8), pages 1-25, April.
    6. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Thiel, Christian, 2015. "Employment effects of renewable electricity deployment. A novel methodology," Energy, Elsevier, vol. 91(C), pages 940-951.
    7. Stavropoulos, S. & Burger, M.J., 2020. "Modelling strategy and net employment effects of renewable energy and energy efficiency: A meta-regression," Energy Policy, Elsevier, vol. 136(C).
    8. Wealer, B. & Bauer, S. & Hirschhausen, C.v. & Kemfert, C. & Göke, L., 2021. "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Llera, E. & Scarpellini, S. & Aranda, A. & Zabalza, I., 2013. "Forecasting job creation from renewable energy deployment through a value-chain approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 262-271.
    10. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2017. "Comparative analysis of direct employment generated by renewable and non-renewable power plants," Energy, Elsevier, vol. 139(C), pages 542-554.
    11. Ina Meyer & Mark Sommer, 2014. "Employment Effects of Renewable Energy Supply – A Meta Analysis. WWWforEurope Policy Paper No. 12," WIFO Studies, WIFO, number 47225.
    12. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Siqiang, 2011. "Green economy and green jobs: Myth or reality? The case of China’s power generation sector," Energy, Elsevier, vol. 36(10), pages 5994-6003.
    13. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    14. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    15. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    16. Peter Greim & A. A. Solomon & Christian Breyer, 2020. "Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    17. Henri Safa, 2017. "The Impact of Energy on Global Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 287-295.
    18. Fischer, W. & Hake, J.-Fr. & Kuckshinrichs, W. & Schröder, T. & Venghaus, S., 2016. "German energy policy and the way to sustainability: Five controversial issues in the debate on the “Energiewende”," Energy, Elsevier, vol. 115(P3), pages 1580-1591.
    19. Hondo, Hiroki & Moriizumi, Yue, 2017. "Employment creation potential of renewable power generation technologies: A life cycle approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 128-136.
    20. Lund, Henrik & Hvelplund, Frede, 2012. "The economic crisis and sustainable development: The design of job creation strategies by use of concrete institutional economics," Energy, Elsevier, vol. 43(1), pages 192-200.
    21. Ram, Manish & Aghahosseini, Arman & Breyer, Christian, 2020. "Job creation during the global energy transition towards 100% renewable power system by 2050," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    22. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
    23. Nagatomo, Yu & Ozawa, Akito & Kudoh, Yuki & Hondo, Hiroki, 2021. "Impacts of employment in power generation on renewable-based energy systems in Japan— Analysis using an energy system model," Energy, Elsevier, vol. 226(C).
    24. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Zhi & Mao, Xianqiang & Lu, Jianhong & Gao, Yubing & Chen, Xing & Zhang, Shining & Ma, Zhiyuan, 2024. "Can a new power system create more employment in China?," Energy, Elsevier, vol. 295(C).
    2. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Arvanitopoulos, T. & Agnolucci, P., 2020. "The long-term effect of renewable electricity on employment in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Ram, Manish & Aghahosseini, Arman & Breyer, Christian, 2020. "Job creation during the global energy transition towards 100% renewable power system by 2050," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    5. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    7. Zhang, Shuo & Yu, Yadong & Kharrazi, Ali & Ma, Tieju, 2023. "How would sustainable transformations in the electricity sector of megacities impact employment levels? A case study of Beijing," Energy, Elsevier, vol. 270(C).
    8. Aldieri, Luigi & Grafström, Jonas & Paolo Vinci, Concetto, 2020. "Job Creation in the Wind Power Sector Through Marshallian and Jacobian Knowledge Spillovers," Ratio Working Papers 340, The Ratio Institute.
    9. Černý, Martin & Bruckner, Martin & Weinzettel, Jan & Wiebe, Kirsten & Kimmich, Christian & Kerschner, Christian & Hubacek, Klaus, 2024. "Global employment and skill level requirements for ‘Post-Carbon Europe’," Ecological Economics, Elsevier, vol. 216(C).
    10. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    11. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    12. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    13. Luigi Aldieri & Jonas Grafström & Concetto Paolo Vinci, 2021. "The Effect of Marshallian and Jacobian Knowledge Spillovers on Jobs in the Solar, Wind and Energy Efficiency Sector," Energies, MDPI, vol. 14(14), pages 1-16, July.
    14. Hassan, Rakibul & Das, Barun K. & Hasan, Mahmudul, 2022. "Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development," Energy, Elsevier, vol. 250(C).
    15. Thure Traber & Franziska Simone Hegner & Hans-Josef Fell, 2021. "An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030," Energies, MDPI, vol. 14(17), pages 1-17, August.
    16. Fragkos, Panagiotis & Paroussos, Leonidas, 2018. "Employment creation in EU related to renewables expansion," Applied Energy, Elsevier, vol. 230(C), pages 935-945.
    17. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    18. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    19. Caldera, Upeksha & Gulagi, Ashish & Jayasinghe, Nilan & Breyer, Christian, 2023. "Looking island wide to overcome Sri Lankaʼs energy crisis while gaining independence from fossil fuel imports," Renewable Energy, Elsevier, vol. 218(C).
    20. Zhang, Xiaoli & Cui, Xueqin & Li, Bo & Hidalgo-Gonzalez, Patricia & Kammen, Daniel M & Zou, Ji & Wang, Ke, 2022. "Immediate actions on coal phaseout enable a just low-carbon transition in China’s power sector," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.