IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225005067.html
   My bibliography  Save this article

Identification and vulnerability assessment of critical components in distribution networks under high penetration rate conditions

Author

Listed:
  • Tang, Liangyu
  • Han, Yang
  • Zhou, Siyu
  • Zalhaf, Amr S.
  • Yang, Ping
  • Wang, Congling
  • Huang, Tao
  • Lu, Chang

Abstract

The power system, a cornerstone of modern infrastructure, is among the most complex artificial networks and plays a vital role in supporting global economic growth. In recent years, several large-scale blackouts worldwide have been triggered by cascading failures due to faults in critical components of the power system. This paper investigates the vulnerability of distribution networks characterized by high renewable energy penetration. Using complex network theory and power flow analysis, this paper thoroughly examines the vulnerability of distribution networks. Considering the uncertainty associated with the high proportion of renewable energy integration into the distribution network, this paper proposes the improved power flow betweenness (IPFB). It quantifies the contribution of critical components in the distribution network to power flow transmission between sources and loads. The index evaluates the vulnerability of critical components based on the distribution network's topology and operating states across various DG output scenarios. The results demonstrate a Pearson correlation coefficient greater than 0.97 between the proposed index and actual power flow distributions, confirming the reliability of the assessment.

Suggested Citation

  • Tang, Liangyu & Han, Yang & Zhou, Siyu & Zalhaf, Amr S. & Yang, Ping & Wang, Congling & Huang, Tao & Lu, Chang, 2025. "Identification and vulnerability assessment of critical components in distribution networks under high penetration rate conditions," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005067
    DOI: 10.1016/j.energy.2025.134864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225005067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Jun Yin & Annalisa Molini & Amilcare Porporato, 2020. "Impacts of solar intermittency on future photovoltaic reliability," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Ravestein, P. & van der Schrier, G. & Haarsma, R. & Scheele, R. & van den Broek, M., 2018. "Vulnerability of European intermittent renewable energy supply to climate change and climate variability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 497-508.
    4. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    7. Laibao Liu & Gang He & Mengxi Wu & Gang Liu & Haoran Zhang & Ying Chen & Jiashu Shen & Shuangcheng Li, 2023. "Climate change impacts on planned supply–demand match in global wind and solar energy systems," Nature Energy, Nature, vol. 8(8), pages 870-880, August.
    8. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Ren, Hongbo & Jiang, Zipei & Wu, Qiong & Li, Qifen & Lv, Hang, 2023. "Optimal planning of an economic and resilient district integrated energy system considering renewable energy uncertainty and demand response under natural disasters," Energy, Elsevier, vol. 277(C).
    10. Tabar, Vahid Sohrabi & Ghassemzadeh, Saeid & Tohidi, Sajjad, 2021. "Increasing resiliency against information vulnerability of renewable resources in the operation of smart multi-area microgrid," Energy, Elsevier, vol. 220(C).
    11. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    12. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Wang, Chen & Zhang, Kaifeng, 2024. "Identifying critical weak points of power-gas integrated energy system based on complex network theory," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naixuan Zhu & Guilian Wu & Hao Chen & Nuoling Sun, 2025. "Resilience Enhancement for Distribution Networks Under Typhoon-Induced Multi-Source Uncertainties," Energies, MDPI, vol. 18(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    2. Lv, Furong & Tang, Haiping, 2025. "Assessing the impact of climate change on the optimal solar–wind hybrid power generation potential in China: A focus on stability and complementarity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    3. Zhao, Zhipeng & Deng, Zhihao & Jin, Xiaoyu & Jia, Zebin & Cao, Rui & Cheng, Chuntian, 2025. "Managing long-term operation of cascade hydropower plants under energy transition with physics-constrained long-short term memory networks," Applied Energy, Elsevier, vol. 393(C).
    4. Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
    5. Xu, Jiuping & Tian, Yalou & Wang, Fengjuan & Yang, Guocan & Zhao, Chuandang, 2024. "Resilience-economy-environment equilibrium based configuration interaction approach towards distributed energy system in energy intensive industry parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Hou Jiang & Ling Yao & Jun Qin & Yongqing Bai & Martin Brandt & Xu Lian & Steve J. Davis & Ning Lu & Wenli Zhao & Tang Liu & Chenghu Zhou, 2025. "Globally interconnected solar-wind system addresses future electricity demands," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    7. Li, Ruohan & Wang, Dongdong & Wang, Zhihao & Liang, Shunlin & Li, Zhanqing & Xie, Yiqun & He, Jiena, 2025. "Transformer approach to nowcasting solar energy using geostationary satellite data," Applied Energy, Elsevier, vol. 377(PA).
    8. Haoxin, Dong & Qiyuan, Deng & Chaojie, Li & Nian, Liu & Zhang, Wenzuo & Hu, Mingyue & Xu, Chuanbo, 2025. "A comprehensive review on renewable power-to-green hydrogen-to-power systems: Green hydrogen production, transportation, storage, re-electrification and safety," Applied Energy, Elsevier, vol. 390(C).
    9. Jiayu Bao & Xianglong Li & Tao Yu & Liangliang Jiang & Jialin Zhang & Fengjiao Song & Wenqiang Xu, 2024. "Are Regions Conducive to Photovoltaic Power Generation Demonstrating Significant Potential for Harnessing Solar Energy via Photovoltaic Systems?," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    10. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    11. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    12. Pedro Gomes da Cruz Filho & Danielle Devequi Gomes Nunes & Hayna Malta Santos & Alex Álisson Bandeira Santos & Bruna Aparecida Souza Machado, 2023. "From Patents to Progress: Genetic Algorithms in Harmonic Distortion Monitoring Technology," Energies, MDPI, vol. 16(24), pages 1-21, December.
    13. Dongyue Zhou & Xueping Pan & Xiaorong Sun & Funian Hu, 2025. "Resilience Assessment Framework for High-Penetration Renewable Energy Power System," Sustainability, MDPI, vol. 17(5), pages 1-20, February.
    14. Zhang, Xi & Wang, Qin & Bi, Xiaowen & Li, Donghong & Liu, Dong & Yu, Yuanjin & Tse, Chi Kong, 2024. "Mitigating cascading failure in power grids with deep reinforcement learning-based remedial actions," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    15. Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    17. Yutong Zhao & Shuang Zeng & Yifeng Ding & Lin Ma & Zhao Wang & Anqi Liang & Hongbo Ren, 2024. "Cost–Benefit Analysis of Distributed Energy Systems Considering the Monetization of Indirect Benefits," Sustainability, MDPI, vol. 16(2), pages 1-13, January.
    18. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    19. Zhang, Chenwei & Wang, Ying & Zheng, Tao & Zhang, Kaifeng, 2024. "Complex network theory-based optimization for enhancing resilience of large-scale multi-energy System11The short version of the paper was presented at CUE2023. This paper is a substantial extension of," Applied Energy, Elsevier, vol. 370(C).
    20. Yihan Wang & Chen Chen & Yuan Tao & Zongguo Wen, 2025. "Uneven renewable energy supply constrains the decarbonization effects of excessively deployed hydrogen-based DRI technology," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.