IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925007895.html
   My bibliography  Save this article

Managing long-term operation of cascade hydropower plants under energy transition with physics-constrained long-short term memory networks

Author

Listed:
  • Zhao, Zhipeng
  • Deng, Zhihao
  • Jin, Xiaoyu
  • Jia, Zebin
  • Cao, Rui
  • Cheng, Chuntian

Abstract

On the path to energy transition, substantial increases in wind and solar power are expected to heighten the complexity of ensuring the continuous load-generation balance for grid stability. Hydropower could be the low-carbon source of flexibility to integrate wind and solar power, but seasonal fluctuations and multiple coupling uncertainties would shape traditional hydropower operations. Here we propose a new simulation–optimization–learning approach that addresses uncertainties and nonlinear dynamic hydropower operation characteristics to extract long-term operational rules for cascade hydropower plants under energy transition. The approach consists of three key steps: Simulation, using Kirsch–Nowak Streamflow Generator and ARIMA to track hydrological and meteorological uncertainties; Optimization, developing the objective-driven optimal model that consider nonlinear dynamic hydropower operation characteristics to obtain optimal schemes before and after energy transition; and Learning, constructing physics-constrained LSTM networks (PCLSTM) that incorporate physical reservoir operation constraints to learn operational rules from the optimal schemes. Case studies are conducted for a hydro-wind-solar hybrid system in Southwest China’s Wujiang River Basin. Results show that: (1) The effective operational rules adapted to energy transition can be extracted; (2) Compared to long-short term memory networks, the operational rules extracted by PCLSTM can enhance simulation accuracy and reduce the degree of reservoir level penalty, effectively guiding hydropower operations both before and after energy transition. The average degree of reservoir level penalty in all hydropower plants could decrease from 22 % to 5 % before the energy transition and from 10 % to 4 % after energy transition; (3) Compared to stochastic dual dynamic programming (SDDP), the real simulation results from the proposed approach are close to those of the state-of-the-art existing approaches and can address problems that the SDDP cannot solve. (4) Hydropower could perform intra-annual hydraulic-electricity spatial-temporal exchange to accommodate wind and solar power, at the expense of sacrificing a portion of hydropower generation.

Suggested Citation

  • Zhao, Zhipeng & Deng, Zhihao & Jin, Xiaoyu & Jia, Zebin & Cao, Rui & Cheng, Chuntian, 2025. "Managing long-term operation of cascade hydropower plants under energy transition with physics-constrained long-short term memory networks," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007895
    DOI: 10.1016/j.apenergy.2025.126059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Jia, Zebin, 2024. "Assessing hydropower capability for accommodating variable renewable energy considering peak shaving of multiple power grids," Energy, Elsevier, vol. 305(C).
    2. Pan Liu & Shenglian Guo & Xiaowei Xu & Jionghong Chen, 2011. "Derivation of Aggregation-Based Joint Operating Rule Curves for Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3177-3200, October.
    3. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Jurasz, Jakub & Zhang, Yi & Lu, Jia, 2023. "Exploring the transition role of cascade hydropower in 100% decarbonized energy systems," Energy, Elsevier, vol. 279(C).
    4. Li, He & Liu, Pan & Guo, Shenglian & Ming, Bo & Cheng, Lei & Yang, Zhikai, 2019. "Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization," Applied Energy, Elsevier, vol. 238(C), pages 863-875.
    5. Zhi, Yuan & Yang, Xudong, 2023. "Scenario-based multi-objective optimization strategy for rural PV-battery systems," Applied Energy, Elsevier, vol. 345(C).
    6. A. kumar & Manish Goyal & C. Ojha & R. Singh & P. Swamee & R. Nema, 2013. "Application of ANN, Fuzzy Logic and Decision Tree Algorithms for the Development of Reservoir Operating Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 911-925, February.
    7. Davy, Richard & Gnatiuk, Natalia & Pettersson, Lasse & Bobylev, Leonid, 2018. "Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1652-1659.
    8. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    9. Fant, Charles & Adam Schlosser, C. & Strzepek, Kenneth, 2016. "The impact of climate change on wind and solar resources in southern Africa," Applied Energy, Elsevier, vol. 161(C), pages 556-564.
    10. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    11. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhang, Jingwen, 2019. "Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation," Energy, Elsevier, vol. 179(C), pages 268-279.
    12. Ding, Ziyu & Wen, Xin & Tan, Qiaofeng & Yang, Tiantian & Fang, Guohua & Lei, Xiaohui & Zhang, Yu & Wang, Hao, 2021. "A forecast-driven decision-making model for long-term operation of a hydro-wind-photovoltaic hybrid system," Applied Energy, Elsevier, vol. 291(C).
    13. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    15. François, B. & Hingray, B. & Raynaud, D. & Borga, M. & Creutin, J.D., 2016. "Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix," Renewable Energy, Elsevier, vol. 87(P1), pages 686-696.
    16. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    17. Sebastian Sterl & Inne Vanderkelen & Celray James Chawanda & Daniel Russo & Robert J. Brecha & Ann Griensven & Nicole P. M. Lipzig & Wim Thiery, 2020. "Smart renewable electricity portfolios in West Africa," Nature Sustainability, Nature, vol. 3(9), pages 710-719, September.
    18. Rasool, Muhammad Haseeb & Taylan, Onur & Perwez, Usama & Batunlu, Canras, 2023. "Comparative assessment of multi-objective optimization of hybrid energy storage system considering grid balancing," Renewable Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xiaoyu & Cheng, Chuntian & Cai, Shubing & Yan, Lingzhi & Zhao, Zhipeng, 2025. "Using stochastic dual dynamic programming to design long-term operation policy of hydro-wind-solar energy systems considering multiple coupled uncertainties and end-of-year carryover storage," Applied Energy, Elsevier, vol. 393(C).
    2. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    3. Yang, Zhikai & Liu, Pan & Xia, Qian & Li, He & Cheng, Qian & Cheng, Lei, 2024. "Operating rules for hydro-photovoltaic systems: A variance-based sensitivity analysis," Applied Energy, Elsevier, vol. 372(C).
    4. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    5. Zhao, Hongye & Liao, Shengli & Ma, Xiangyu & Fang, Zhou & Cheng, Chuntian & Zhang, Zheng, 2024. "Short-term peak-shaving scheduling of a hydropower-dominated hydro-wind-solar photovoltaic hybrid system considering a shared multienergy coupling transmission channel," Applied Energy, Elsevier, vol. 372(C).
    6. Zhang, Junhao & Wang, Yimin & Wang, Xuebin & Guo, Aijun & Chang, Jianxia & Niu, Chen & Li, Zhehao & Wang, Liyuan & Ren, Chengqing, 2025. "Quantitative analysis and operation strategies for daily-regulation hydropower plants impacted by upstream plant," Energy, Elsevier, vol. 328(C).
    7. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    8. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    9. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    10. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    12. Sterl, Sebastian & Donk, Peter & Willems, Patrick & Thiery, Wim, 2020. "Turbines of the Caribbean: Decarbonising Suriname's electricity mix through hydro-supported integration of wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Gong, Yu & Liu, Pan & Ming, Bo & Feng, Maoyuan & Huang, Kangdi & Wang, Yibo, 2022. "Identifying the functional form of operating rules for hydro–photovoltaic hybrid power systems," Energy, Elsevier, vol. 243(C).
    14. Wang, Yanling & Wen, Xin & Su, Huaying & Qin, Jisen & Kong, Linghui, 2023. "Real-time dispatch of hydro-photovoltaic (PV) hybrid system based on dynamic load reserve capacity," Energy, Elsevier, vol. 285(C).
    15. Gong, Yu & Liu, Tingxi & Liu, Pan & Duan, Limin, 2024. "Deriving joint operating rule curves for hydro–hydrogen–wind–photovoltaic hybrid power systems," Applied Energy, Elsevier, vol. 375(C).
    16. Li, Xiao & Liu, Pan & Wang, Yibo & Yang, Zhikai & Gong, Yu & An, Rihui & Huang, Kangdi & Wen, Yan, 2022. "Derivation of operating rule curves for cascade hydropower reservoirs considering the spot market: A case study of the China's Qing River cascade-reservoir system," Renewable Energy, Elsevier, vol. 182(C), pages 1028-1038.
    17. Li, He & Liu, Pan & Guo, Shenglian & Zuo, Qiting & Cheng, Lei & Tao, Jie & Huang, Kangdi & Yang, Zhikai & Han, Dongyang & Ming, Bo, 2022. "Integrating teleconnection factors into long-term complementary operating rules for hybrid power systems: A case study of Longyangxia hydro-photovoltaic plant in China," Renewable Energy, Elsevier, vol. 186(C), pages 517-534.
    18. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    19. Li, Yan & Ming, Bo & Huang, Qiang & Wang, Yimin & Liu, Pan & Guo, Pengcheng, 2022. "Identifying effective operating rules for large hydro–solar–wind hybrid systems based on an implicit stochastic optimization framework," Energy, Elsevier, vol. 245(C).
    20. Chang-ming Ji & Ting Zhou & Hai-tao Huang, 2014. "Operating Rules Derivation of Jinsha Reservoirs System with Parameter Calibrated Support Vector Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2435-2451, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.