IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v159y2022ics1364032122001095.html
   My bibliography  Save this article

Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics

Author

Listed:
  • Rocchetta, Roberto

Abstract

Controlled islanding can enhance power grid resilience and help mitigate the effect of emerging failure by splitting the grid into islands that can be rapidly and independently recovered and managed. In practice, controlled islanding is challenging and requires vulnerability assessment and uncertainty quantification. In this work, we investigate robustness drops due to N−k line failures and a controlled partitioning strategy for mitigating their consequences. A spectral clustering algorithm is employed to decompose the adjacency matrix of the damaged network and identify optimal network partitions. The adjacency matrix summarizes the power system topology, and different dynamic and static electrical factors such as line impedance and flows are employed to weigh the importance of the grid’s cables. Differently from other works, we propose a statistical correlation analysis between vulnerability metrics and goodness of cluster scores. We investigate expected trends in the scores for randomized contingencies of increasing orders and examine their variability for random outages of a given size. We observed that the spectral radius and natural connectivity vary less on randomized failure events of a given size and are more sensitive to the selection of the adjacency matrix weights. Vulnerability scores based on the algebraic connectivity have a higher coefficient of variation for a given damage size and are less dependent on the specific dynamic and static electrical weighting factors. We show a few consistent patterns in the correlations between the scores for the vulnerability of the grid and the optimal clusters. The strength and sign of the correlation coefficients depend on the different electrical factors weighting the transmission lines and the grid-specific topology.

Suggested Citation

  • Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001095
    DOI: 10.1016/j.rser.2022.112185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122001095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rocchetta, Roberto & Patelli, Edoardo, 2020. "A post-contingency power flow emulator for generalized probabilistic risks assessment of power grids," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    2. Sang, Maosheng & Ding, Yi & Bao, Minglei & Li, Siying & Ye, Chengjin & Fang, Youtong, 2021. "Resilience-based restoration strategy optimization for interdependent gas and power networks," Applied Energy, Elsevier, vol. 302(C).
    3. Zio, Enrico & Aven, Terje, 2011. "Uncertainties in smart grids behavior and modeling: What are the risks and vulnerabilities? How to analyze them?," Energy Policy, Elsevier, vol. 39(10), pages 6308-6320, October.
    4. Li, Y.F. & Sansavini, G. & Zio, E., 2013. "Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 195-205.
    5. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Erratum: Universal resilience patterns in complex networks," Nature, Nature, vol. 536(7615), pages 238-238, August.
    7. Giuliano Andrea Pagani & Marco Aiello, 2015. "A complex network approach for identifying vulnerabilities of the medium and low voltage grid," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 36-61.
    8. Bo, Zeng & Shaojie, Ouyang & Jianhua, Zhang & Hui, Shi & Geng, Wu & Ming, Zeng, 2015. "An analysis of previous blackouts in the world: Lessons for China׳s power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1151-1163.
    9. van Dam, E.R. & Kooij, R.E., 2006. "The Minimal Spectral Radius of Graphs with a Given Diameter," Discussion Paper 2006-102, Tilburg University, Center for Economic Research.
    10. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    11. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Fang, Chao & Marle, Franck & Zio, Enrico & Bocquet, Jean-Claude, 2012. "Network theory-based analysis of risk interactions in large engineering projects," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 1-10.
    13. Koç, Yakup & Warnier, Martijn & Van Mieghem, Piet & Kooij, Robert E. & Brazier, Frances M.T., 2014. "A topological investigation of phase transitions of cascading failures in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 273-284.
    14. Fang, Yi-Ping & Zio, Enrico, 2013. "Unsupervised spectral clustering for hierarchical modelling and criticality analysis of complex networks," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 64-74.
    15. Xu, Luo & Guo, Qinglai & Sheng, Yujie & Muyeen, S.M. & Sun, Hongbin, 2021. "On the resilience of modern power systems: A comprehensive review from the cyber-physical perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Azzolin, Alberto & Dueñas-Osorio, Leonardo & Cadini, Francesco & Zio, Enrico, 2018. "Electrical and topological drivers of the cascading failure dynamics in power transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 196-206.
    17. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    18. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    19. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Ding, Tao & Lin, Yanling & Bie, Zhaohong & Chen, Chen, 2017. "A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration," Applied Energy, Elsevier, vol. 199(C), pages 205-216.
    21. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    22. Eusgeld, Irene & Kröger, Wolfgang & Sansavini, Giovanni & Schläpfer, Markus & Zio, Enrico, 2009. "The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 954-963.
    23. Koç, Yakup & Warnier, Martijn & Mieghem, Piet Van & Kooij, Robert E. & Brazier, Frances M.T., 2014. "The impact of the topology on cascading failures in a power grid model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 169-179.
    24. Ferrario, E. & Pedroni, N. & Zio, E., 2016. "Evaluation of the robustness of critical infrastructures by Hierarchical Graph representation, clustering and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 78-96.
    25. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2020. "Power flow-based approaches to assess vulnerability, reliability, and contingency of the power systems: The benefits and limitations," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    26. Fang, Yiping & Sansavini, Giovanni, 2017. "Optimizing power system investments and resilience against attacks," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 161-173.
    27. Yacov Y. Haimes, 2006. "On the Definition of Vulnerabilities in Measuring Risks to Infrastructures," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 293-296, April.
    28. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    29. Rocchetta, R. & Li, Y.F. & Zio, E., 2015. "Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 47-61.
    30. Wu, Raphael & Sansavini, Giovanni, 2020. "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids," Applied Energy, Elsevier, vol. 272(C).
    31. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    32. Liu, Zhe & Wang, Dan & Jia, Hongjie & Djilali, Ned, 2014. "Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 136(C), pages 662-670.
    33. Michael T Schaub & Jean-Charles Delvenne & Sophia N Yaliraki & Mauricio Barahona, 2012. "Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    34. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "Estimation of rare event probabilities in power transmission networks subject to cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 9-20.
    35. Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    36. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    2. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    3. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    4. David, Alexander E. & Gjorgiev, Blazhe & Sansavini, Giovanni, 2020. "Quantitative comparison of cascading failure models for risk-based decision making in power systems," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    5. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    6. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Forsberg, Samuel & Thomas, Karin & Bergkvist, Mikael, 2023. "Power grid vulnerability analysis using complex network theory: A topological study of the Nordic transmission grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    8. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    9. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Abedi, Amin & Romerio, Franco, 2020. "Multi-period vulnerability analysis of power grids under multiple outages: An AC-based bilevel optimization approach," International Journal of Critical Infrastructure Protection, Elsevier, vol. 30(C).
    13. Zhang, Xi & Tu, Haicheng & Guo, Jianbo & Ma, Shicong & Li, Zhen & Xia, Yongxiang & Tse, Chi Kong, 2021. "Braess paradox and double-loop optimization method to enhance power grid resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Beyza, Jesus & Gil, Pablo & Masera, Marcelo & Yusta, Jose M., 2020. "Security assessment of cross-border electricity interconnections," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    16. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Mohammad Zaher Serdar & Sami G. Al-Ghamdi, 2021. "Resiliency Assessment of Road Networks during Mega Sport Events: The Case of FIFA World Cup Qatar 2022," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    18. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Tio, Adonis E. & Hill, David J. & Ma, Jin, 2020. "Can graph properties determine future grid adequacy for power injection diversity?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    20. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.