IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v198y2020ics0951832019315170.html
   My bibliography  Save this article

Quantitative comparison of cascading failure models for risk-based decision making in power systems

Author

Listed:
  • David, Alexander E.
  • Gjorgiev, Blazhe
  • Sansavini, Giovanni

Abstract

The accurate allocation and prediction of risk in power systems is vital for reliable operations of the electrical infrastructure. Several models with varying degrees of accuracy and computational cost are available. Relying on less computationally intensive methods increases the efficiency of risk assessment provided that the output does not impair control actions and decision making. This study focuses on comparing two established cascading failure models for determining their consistency to risk-based decision making. Effects of ambient conditions are captured via temperature-dependent dynamic transmission line ratings. The investigations on the IEEE 24-Bus reliability test system highlight that, when the power grid is subjected to elevated temperature and demand levels, the deviations between Manchester and OPA model can be significant. However, both models show the same general trends, namely, that the demand not served generally increases with increasing temperature and demand. Further similarities are found in terms of the most critical lines and the most heavily loaded generators, providing useful information for power system expansion planning. The OPA model displays a much larger area of elevated risk across the input space that also includes almost the entire area found by the Manchester model, providing conservative estimates in highly stressed power systems.

Suggested Citation

  • David, Alexander E. & Gjorgiev, Blazhe & Sansavini, Giovanni, 2020. "Quantitative comparison of cascading failure models for risk-based decision making in power systems," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:reensy:v:198:y:2020:i:c:s0951832019315170
    DOI: 10.1016/j.ress.2020.106877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019315170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    2. Fang, Yiping & Sansavini, Giovanni, 2017. "Optimizing power system investments and resilience against attacks," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 161-173.
    3. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2017. "AC power flow importance measures considering multi-element failures," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 89-97.
    4. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    5. Rocchetta, R. & Li, Y.F. & Zio, E., 2015. "Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 47-61.
    6. Salim, Nur Ashida & Othman, Muhammad Murtadha & Musirin, Ismail & Serwan, Mohd Salleh & Busan, Stendley, 2017. "Risk assessment of dynamic system cascading collapse for determining the sensitive transmission lines and severity of total loading conditions," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 113-128.
    7. Azzolin, Alberto & Dueñas-Osorio, Leonardo & Cadini, Francesco & Zio, Enrico, 2018. "Electrical and topological drivers of the cascading failure dynamics in power transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 196-206.
    8. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    9. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "Estimation of rare event probabilities in power transmission networks subject to cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 9-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Lin & Xu, Min & Wang, Shuaian, 2023. "Quantifying bus route service disruptions under interdependent cascading failures of a multimodal public transit system based on an improved coupled map lattice model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Zhang, Xi & Liu, Dong & Tu, Haicheng & Tse, Chi Kong, 2022. "An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    3. Fu, Xiuwen & Yao, Haiqing & Yang, Yongsheng, 2019. "Modeling and analyzing cascading dynamics of the clustered wireless sensor network," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 1-10.
    4. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    7. Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    8. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    9. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Chiou, Suh-Wen, 2018. "A traffic-responsive signal control to enhance road network resilience with hazmat transportation in multiple periods," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 105-118.
    11. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    12. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Beyza, Jesus & Gil, Pablo & Masera, Marcelo & Yusta, Jose M., 2020. "Security assessment of cross-border electricity interconnections," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    14. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    15. Bellè, Andrea & Zeng, Zhiguo & Duval, Carole & Sango, Marc & Barros, Anne, 2022. "Modeling and vulnerability analysis of interdependent railway and power networks: Application to British test systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2020. "Power flow-based approaches to assess vulnerability, reliability, and contingency of the power systems: The benefits and limitations," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    17. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    18. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    19. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    20. Zhang, Xi & Liu, Dong & Tu, Haicheng & Tse, Chi Kong, 2022. "An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:198:y:2020:i:c:s0951832019315170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.