IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6509-d1236588.html
   My bibliography  Save this article

Current Status and Perspective of Vulnerability Assessment of Cyber-Physical Power Systems Based on Complex Network Theory

Author

Listed:
  • Tianlei Zang

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China
    Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China)

  • Zian Wang

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China
    Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China)

  • Xiaoguang Wei

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Yi Zhou

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China
    Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China)

  • Jiale Wu

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China
    Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China)

  • Buxiang Zhou

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China
    Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China)

Abstract

The increasing factors of uncertainty faced by the system are due to the deep coupling of the electric power cyber network and the physical network. Consequently, ensuring the efficient, secure, and stable operation of the cyber–physical power system (CPPS) has become a key concern. To achieve this, vulnerability assessment plays a crucial role, as it identifies and protects the vulnerable points of the system. The application of complex network theory to assess the vulnerability of CPPSs has garnered significant attention from scholars. This paper delves into the research connotation of vulnerability assessment for CPPSs, starting with the origin, definition, and classification of vulnerability. Subsequently, the assessment framework of vulnerability based on complex network theory is presented, and the status of current domestic and international research in this field is summarized. Furthermore, the interrelationship between system vulnerability and cascading failures is analyzed from the perspective of complex network theory. In conclusion, the ideas of CPPS coupling modeling in vulnerability assessment are summarized, the concept of situation awareness is introduced, and a prospective approach for dynamic vulnerability assessment is proposed. This approach is based on situation awareness combined with complex network theory. Security protection and optimal operation of CPPSs based on vulnerability assessment are also discussed, along with the assessment of vulnerability within integrated energy cyber–physical systems (IECPSs).

Suggested Citation

  • Tianlei Zang & Zian Wang & Xiaoguang Wei & Yi Zhou & Jiale Wu & Buxiang Zhou, 2023. "Current Status and Perspective of Vulnerability Assessment of Cyber-Physical Power Systems Based on Complex Network Theory," Energies, MDPI, vol. 16(18), pages 1-38, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6509-:d:1236588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Kai & Zhang, Bu-han & Zhang, Zhe & Yin, Xiang-gen & Wang, Bo, 2011. "An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4692-4701.
    2. Aretano, Roberta & Semeraro, Teodoro & Petrosillo, Irene & De Marco, Antonella & Pasimeni, Maria Rita & Zurlini, Giovanni, 2015. "Mapping ecological vulnerability to fire for effective conservation management of natural protected areas," Ecological Modelling, Elsevier, vol. 295(C), pages 163-175.
    3. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    4. Fang, Yiping & Sansavini, Giovanni, 2017. "Optimizing power system investments and resilience against attacks," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 161-173.
    5. Buxiang Zhou & Jiale Wu & Tianlei Zang & Yating Cai & Binjie Sun & Yiwei Qiu, 2023. "Emergency Dispatch Approach for Power Systems with Hybrid Energy Considering Thermal Power Unit Ramping," Energies, MDPI, vol. 16(10), pages 1-25, May.
    6. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo, 2004. "A topological analysis of the Italian electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 92-97.
    7. Saniee Monfared, Momhammad Ali & Jalili, Mahdi & Alipour, Zohreh, 2014. "Topology and vulnerability of the Iranian power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 24-33.
    8. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    9. Xiaoguang Wei & Shibin Gao & Tao Huang & Tao Wang & Wenli Fan, 2019. "Identification of Two Vulnerability Features: A New Framework for Electrical Networks Based on the Load Redistribution Mechanism of Complex Networks," Complexity, Hindawi, vol. 2019, pages 1-14, January.
    10. Leijiao Ge & Yuanliang Li & Yuanliang Li & Jun Yan & Yonghui Sun, 2022. "Smart Distribution Network Situation Awareness for High-Quality Operation and Maintenance: A Brief Review," Energies, MDPI, vol. 15(3), pages 1-24, January.
    11. Nasiruzzaman, A.B.M. & Pota, H.R. & Akter, Most. Nahida, 2014. "Vulnerability of the large-scale future smart electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 11-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Espejo, Rafael & Lumbreras, Sara & Ramos, Andres, 2018. "Analysis of transmission-power-grid topology and scalability, the European case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 383-395.
    2. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Ma, Tian-Lin & Yao, Jian-Xi & Qi, Cheng & Zhu, Hong-Lu & Sun, Yu-Shu, 2013. "Non-monotonic increase of robustness with capacity tolerance in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5516-5524.
    5. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    6. Upama Nakarmi & Mahshid Rahnamay Naeini & Md Jakir Hossain & Md Abul Hasnat, 2020. "Interaction Graphs for Cascading Failure Analysis in Power Grids: A Survey," Energies, MDPI, vol. 13(9), pages 1-25, May.
    7. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    8. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    9. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    10. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    11. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    12. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    13. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    14. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    16. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    17. Youba Nait Belaid & Patrick Coudray & José Sanchez-Torres & Yi-Ping Fang & Zhiguo Zeng & Anne Barros, 2021. "Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective," Energies, MDPI, vol. 14(10), pages 1-29, May.
    18. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Ji, Xingpei & Wang, Bo & Liu, Dichen & Chen, Guo & Tang, Fei & Wei, Daqian & Tu, Lian, 2016. "Improving interdependent networks robustness by adding connectivity links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 9-19.
    20. Bellè, Andrea & Zeng, Zhiguo & Duval, Carole & Sango, Marc & Barros, Anne, 2022. "Modeling and vulnerability analysis of interdependent railway and power networks: Application to British test systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6509-:d:1236588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.