IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp476-487.html
   My bibliography  Save this article

Structural and functional robustness of networked critical infrastructure systems under different failure scenarios

Author

Listed:
  • Wang, Shuliang
  • Lv, Wenzhuo
  • Zhao, Longfeng
  • Nie, Sen
  • Stanley, H. Eugene

Abstract

We analyze the structural and functional robustness of networked critical infrastructure systems (CISs). We propose a structural and functional robustness model of a typical complex network and take into account the corresponding measuring metrics and cascading processes to assess the impact of different hazard modes on robustness. We analyze the robustness of the shanghai subway network and the central China power grid to demonstrate an application of the model. We find that both are strongly robust to random failure but extremely vulnerable to targeted attack. We identify the critical areas most likely to be attack targets and use a functional perspective to identify vulnerabilities. Our proposed method can be applied to other CISs and aid in understanding the mechanisms of network robustness.

Suggested Citation

  • Wang, Shuliang & Lv, Wenzhuo & Zhao, Longfeng & Nie, Sen & Stanley, H. Eugene, 2019. "Structural and functional robustness of networked critical infrastructure systems under different failure scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 476-487.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:476-487
    DOI: 10.1016/j.physa.2019.01.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301414
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ya-Chun Gao & Yong Zeng & Shi-Min Cai, 2015. "Influence network in Chinese stock market," Papers 1503.00823, arXiv.org.
    2. Nan, Cen & Eusgeld, Irene, 2011. "Adopting HLA standard for interdependency study," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 149-159.
    3. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    4. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    5. Raul J Mondragon & Jacopo Iacovacci & Ginestra Bianconi, 2018. "Multilink communities of multiplex networks," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-15, March.
    6. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    7. Wang, Hui & Li, Ming & Deng, Lin & Wang, Bing-Hong, 2018. "Robustness of networks with assortative dependence groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 195-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Jie & Wen, Weiping & Zhai, Changhai & Pei, Shunshun, 2024. "Post-earthquake functionality assessment for urban subway systems: Incorporating the combined effects of seismic performance of structural and non-structural systems and functional interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    3. Gao, Xin & Ye, Yunxia & Su, Wenxin & Chen, Linyan, 2023. "Assessing the comprehensive importance of power grid nodes based on DEA," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    4. Navid Moghadam, Nastaran & Nazarimehr, Fahimeh & Jafari, Sajad & Sprott, Julien C., 2020. "Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    5. Wei, Wei & Hu, Qiuyuan & Zhang, Qinghui, 2024. "Improving node connectivity by optimized dual tree-based effective node consolidation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Guo, Xue & Li, Weibo & Zhang, Hu & Tian, Tianhai, 2022. "Multi-likelihood methods for developing relationship networks using stock market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Peng & Di Wu & Mengyao Sun & Shaomin Wu, 2021. "An attack-defense game on interdependent networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2331-2341, October.
    2. Seyed Alireza Hasheminasab & Behrouz Tork Ladani, 2018. "Security Investment in Contagious Networks," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1559-1575, August.
    3. Judy P. Che-Castaldo & RĂ©mi Cousin & Stefani Daryanto & Grace Deng & Mei-Ling E. Feng & Rajesh K. Gupta & Dezhi Hong & Ryan M. McGranaghan & Olukunle O. Owolabi & Tianyi Qu & Wei Ren & Toryn L. J. Sch, 2021. "Critical Risk Indicators (CRIs) for the electric power grid: a survey and discussion of interconnected effects," Environment Systems and Decisions, Springer, vol. 41(4), pages 594-615, December.
    4. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    5. Zhang, Wangxin & Han, Qiang & Shang, Wen-Long & Xu, Chengshun, 2024. "Seismic resilience assessment of interdependent urban transportation-electric power system under uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    6. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    7. Tianlei Zang & Zian Wang & Xiaoguang Wei & Yi Zhou & Jiale Wu & Buxiang Zhou, 2023. "Current Status and Perspective of Vulnerability Assessment of Cyber-Physical Power Systems Based on Complex Network Theory," Energies, MDPI, vol. 16(18), pages 1-38, September.
    8. Zhou, Shenghua & Yang, Yifan & Ng, S. Thomas & Xu, J. Frank & Li, Dezhi, 2020. "Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
    9. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Ahmed Shokry & Piero Baraldi & Andrea Castellano & Luigi Serio & Enrico Zio, 2021. "Identification of Critical Components in the Complex Technical Infrastructure of the Large Hadron Collider Using Relief Feature Ranking and Support Vector Machines," Energies, MDPI, vol. 14(18), pages 1-19, September.
    11. Chaoqi, Fu & Yangjun, Gao & Jilong, Zhong & Yun, Sun & Pengtao, Zhang & Tao, Wu, 2021. "Attack-defense game for critical infrastructure considering the cascade effect," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    13. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    14. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    15. Li, Yulong & Lin, Jie & Zhang, Chi & Zhu, Huaxing & Zeng, Saixing & Sun, Chengshaung, 2022. "Joint optimization of structure and protection of interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    16. Liu, Kai & Wang, Ming & Zhu, Weihua & Wu, Jinshan & Yan, Xiaoyong, 2018. "Vulnerability analysis of an urban gas pipeline network considering pipeline-road dependency," International Journal of Critical Infrastructure Protection, Elsevier, vol. 23(C), pages 79-89.
    17. Ahmed Ali A. Mohamed, 2019. "On the Rising Interdependency between the Power Grid, ICT Network, and E-Mobility: Modeling and Analysis," Energies, MDPI, vol. 12(10), pages 1-17, May.
    18. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    19. Wang, Jianwei & Wang, Siyuan & Wang, Ziwei, 2022. "Robustness of spontaneous cascading dynamics driven by reachable area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    20. Zhang, Jianhua & Song, Bo & Zhang, Zhaojun & Liu, Haikuan, 2014. "An approach for modeling vulnerability of the network of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 127-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:476-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.