IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p6000-d640114.html
   My bibliography  Save this article

Identification of Critical Components in the Complex Technical Infrastructure of the Large Hadron Collider Using Relief Feature Ranking and Support Vector Machines

Author

Listed:
  • Ahmed Shokry

    (Center for Applied Mathematics, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France)

  • Piero Baraldi

    (Energy Department, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, Italy)

  • Andrea Castellano

    (Energy Department, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, Italy)

  • Luigi Serio

    (Engineering Department, CERN, 1211 Geneva, Switzerland)

  • Enrico Zio

    (Energy Department, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, Italy
    Centre de Recherche sur les Risques et les Crises (CRC), MINES ParisTech, PSL Research University, 06904 Sophia Antipolis, France)

Abstract

This work proposes a data-driven methodology for identifying critical components in Complex Technical Infrastructures (CTIs), for which the functional logic and/or the system structure functions are not known due the CTI’s complexity and evolving nature. The methodology uses large amounts of CTI monitoring data acquired over long periods of time and under different operating conditions. The critical components are identified as those for which the condition monitoring signals permit the optimal classification of the CTI functioning or failed state. The methodology includes two stages: in the first stage, a feature selection filter method based on the Relief technique is used to rank the monitoring signals according to their importance with respect to the CTI functioning or failed state; the second stage identifies the subset of signals among those highlighted by the Relief technique that are most informative with respect to the CTI state. This identification is performed on the basis of evaluating the performance of a Cost-Sensitive Support Vector Machine (CS-SVM) classifier trained with several subsets of the candidate signals. The capabilities of the methodology proposed are assessed through its application to different benchmarks of highly imbalanced datasets, showing performances that are competitive to those obtained by other methods presented in the literature. The methodology is finally applied to the monitoring signals of the Large Hadron Collider (LHC) of the European Organization for Nuclear Research (CERN), a CTI for experiments of physics; the criticality of the identified components has been confirmed by CERN experts.

Suggested Citation

  • Ahmed Shokry & Piero Baraldi & Andrea Castellano & Luigi Serio & Enrico Zio, 2021. "Identification of Critical Components in the Complex Technical Infrastructure of the Large Hadron Collider Using Relief Feature Ranking and Support Vector Machines," Energies, MDPI, vol. 14(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:6000-:d:640114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/6000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/6000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    2. Patterson, S.A. & Apostolakis, G.E., 2007. "Identification of critical locations across multiple infrastructures for terrorist actions," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1183-1203.
    3. Baraldi, Piero & Castellano, Andrea & Shokry, Ahmed & Gentile, Ugo & Serio, Luigi & Zio, Enrico, 2020. "A Feature Selection-based Approach for the Identification of Critical Components in Complex Technical Infrastructures: Application to the CERN Large Hadron Collider," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Genge, Béla & Kiss, István & Haller, Piroska, 2015. "A system dynamics approach for assessing the impact of cyber attacks on critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 10(C), pages 3-17.
    5. Antonello, Federico & Baraldi, Piero & Shokry, Ahmed & Zio, Enrico & Gentile, Ugo & Serio, Luigi, 2021. "Association rules extraction for the identification of functional dependencies in complex technical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
    7. Chopra, Shauhrat S. & Khanna, Vikas, 2015. "Interconnectedness and interdependencies of critical infrastructures in the US economy: Implications for resilience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 865-877.
    8. Zio, E. & Ferrario, E., 2013. "A framework for the system-of-systems analysis of the risk for a safety-critical plant exposed to external events," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 114-125.
    9. Lu, Xuefei & Baraldi, Piero & Zio, Enrico, 2020. "A data-driven framework for identifying important components in complex systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    11. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    12. Loyola-Fuentes, José & Smith, Robin, 2019. "Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition," Energy, Elsevier, vol. 183(C), pages 368-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piero Baraldi & Roozbeh Razavi-Far & Enrico Zio, 2023. "Guest Editorial: Special Issue of ESREL2020 PSAM15," Energies, MDPI, vol. 16(4), pages 1-2, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baraldi, Piero & Castellano, Andrea & Shokry, Ahmed & Gentile, Ugo & Serio, Luigi & Zio, Enrico, 2020. "A Feature Selection-based Approach for the Identification of Critical Components in Complex Technical Infrastructures: Application to the CERN Large Hadron Collider," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    2. Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Argenti, Francesca & Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio, 2018. "Vulnerability assessment of chemical facilities to intentional attacks based on Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 515-530.
    4. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2023. "A multi-objective optimization model for identifying groups of critical elements in a high-speed train," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    6. Almoghathawi, Yasser & Selim, Shokri & Barker, Kash, 2023. "Community structure recovery optimization for partial disruption, functionality, and restoration in interdependent networks," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    8. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    10. Rui Peng & Di Wu & Mengyao Sun & Shaomin Wu, 2021. "An attack-defense game on interdependent networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2331-2341, October.
    11. Seyed Alireza Hasheminasab & Behrouz Tork Ladani, 2018. "Security Investment in Contagious Networks," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1559-1575, August.
    12. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    13. Mishra, Vishrut Kumar & Palleti, Venkata Reddy & Mathur, Aditya, 2019. "A modeling framework for critical infrastructure and its application in detecting cyber-attacks on a water distribution system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    14. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    15. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    16. Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    17. Wang, Shuliang & Lv, Wenzhuo & Zhao, Longfeng & Nie, Sen & Stanley, H. Eugene, 2019. "Structural and functional robustness of networked critical infrastructure systems under different failure scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 476-487.
    18. Simon, Jay & Omar, Ayman, 2020. "Cybersecurity investments in the supply chain: Coordination and a strategic attacker," European Journal of Operational Research, Elsevier, vol. 282(1), pages 161-171.
    19. Chaoqi, Fu & Yangjun, Gao & Jilong, Zhong & Yun, Sun & Pengtao, Zhang & Tao, Wu, 2021. "Attack-defense game for critical infrastructure considering the cascade effect," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Beyza, Jesus & Yusta, Jose M., 2021. "The effects of the high penetration of renewable energies on the reliability and vulnerability of interconnected electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:6000-:d:640114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.