Author
Listed:
- Yihan Wang
(The University of Hong Kong)
- Zongguo Wen
(Tsinghua University
State Key Laboratory of Iron and Steel Industry Environmental Protection)
- Mao Xu
(Tsinghua University
State Key Laboratory of Iron and Steel Industry Environmental Protection)
- Christian Doh Dinga
(Delft University of Technology)
Abstract
Carbon capture and storage (CCS) has substantial potential for deep decarbonization of the steel sector. However, long-term transformations within this sector lead to significant changes in steel units, posing challenges for CCS deployment. Here, we integrate sector-level transformation pathways by 2060 to simulate the distribution of China’s steel units and generate optimal CCS deployment schemes using a source-sink matching model. Results indicate that CCS accounts for 31.4-40.7% of carbon mitigation effects in China’s steel sector by 2060. Following the sector-level pathways, over 650 steel units will either be eliminated or retrofitted. The optimal CCS deployment schemes can achieve carbon mitigation effects of 472.4-609.6 Mt at levelized costs of 187.4-193.5 Chinese Yuan t−1 CO2, demonstrating cost-effectiveness under future carbon price levels. Nevertheless, the proposed schemes will lead to energy and water consumption of 951.0-1427.3 PJ and 1.60-1.69 million m3, respectively, posing a risk of resource scarcity. These insights inform the development of CCS implementation strategies in China’s steel sector and beyond, promoting deep decarbonization throughout society.
Suggested Citation
Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025.
"Long-term transformation in China’s steel sector for carbon capture and storage technology deployment,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59205-3
DOI: 10.1038/s41467-025-59205-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59205-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.