IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59205-3.html
   My bibliography  Save this article

Long-term transformation in China’s steel sector for carbon capture and storage technology deployment

Author

Listed:
  • Yihan Wang

    (The University of Hong Kong)

  • Zongguo Wen

    (Tsinghua University
    State Key Laboratory of Iron and Steel Industry Environmental Protection)

  • Mao Xu

    (Tsinghua University
    State Key Laboratory of Iron and Steel Industry Environmental Protection)

  • Christian Doh Dinga

    (Delft University of Technology)

Abstract

Carbon capture and storage (CCS) has substantial potential for deep decarbonization of the steel sector. However, long-term transformations within this sector lead to significant changes in steel units, posing challenges for CCS deployment. Here, we integrate sector-level transformation pathways by 2060 to simulate the distribution of China’s steel units and generate optimal CCS deployment schemes using a source-sink matching model. Results indicate that CCS accounts for 31.4-40.7% of carbon mitigation effects in China’s steel sector by 2060. Following the sector-level pathways, over 650 steel units will either be eliminated or retrofitted. The optimal CCS deployment schemes can achieve carbon mitigation effects of 472.4-609.6 Mt at levelized costs of 187.4-193.5 Chinese Yuan t−1 CO2, demonstrating cost-effectiveness under future carbon price levels. Nevertheless, the proposed schemes will lead to energy and water consumption of 951.0-1427.3 PJ and 1.60-1.69 million m3, respectively, posing a risk of resource scarcity. These insights inform the development of CCS implementation strategies in China’s steel sector and beyond, promoting deep decarbonization throughout society.

Suggested Citation

  • Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59205-3
    DOI: 10.1038/s41467-025-59205-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59205-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59205-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lukas Hermwille & Stefan Lechtenböhmer & Max Åhman & Harro Asselt & Chris Bataille & Stefan Kronshage & Annika Tönjes & Manfred Fischedick & Sebastian Oberthür & Amit Garg & Catherine Hall & Patrick J, 2022. "A climate club to decarbonize the global steel industry," Nature Climate Change, Nature, vol. 12(6), pages 494-496, June.
    2. Ren, Ming & Lu, Pantao & Liu, Xiaorui & Hossain, M.S. & Fang, Yanru & Hanaoka, Tatsuya & O'Gallachoir, Brian & Glynn, James & Dai, Hancheng, 2021. "Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality," Applied Energy, Elsevier, vol. 298(C).
    3. John Barrett & Steve Pye & Sam Betts-Davies & Oliver Broad & James Price & Nick Eyre & Jillian Anable & Christian Brand & George Bennett & Rachel Carr-Whitworth & Alice Garvey & Jannik Giesekam & Greg, 2022. "Energy demand reduction options for meeting national zero-emission targets in the United Kingdom," Nature Energy, Nature, vol. 7(8), pages 726-735, August.
    4. Lukas Hermwille & Stefan Lechtenböhmer & Max Åhman & Harro Asselt & Chris Bataille & Stefan Kronshage & Annika Tönjes & Manfred Fischedick & Sebastian Oberthür & Amit Garg & Catherine Hall & Patrick J, 2022. "Author Correction: A climate club to decarbonize the global steel industry," Nature Climate Change, Nature, vol. 12(11), pages 1068-1068, November.
    5. Qiang Yue & Xicui Chai & Yujie Zhang & Qi Wang & Heming Wang & Feng Zhao & Wei Ji & Yuqi Lu, 2023. "Analysis of iron and steel production paths on the energy demand and carbon emission in China’s iron and steel industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4065-4085, May.
    6. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.
    7. S. V. Hanssen & V. Daioglou & Z. J. N. Steinmann & J. C. Doelman & D. P. Vuuren & M. A. J. Huijbregts, 2020. "The climate change mitigation potential of bioenergy with carbon capture and storage," Nature Climate Change, Nature, vol. 10(11), pages 1023-1029, November.
    8. Tianyang Lei & Daoping Wang & Xiang Yu & Shijun Ma & Weichen Zhao & Can Cui & Jing Meng & Shu Tao & Dabo Guan, 2023. "Global iron and steel plant CO2 emissions and carbon-neutrality pathways," Nature, Nature, vol. 622(7983), pages 514-520, October.
    9. Xu, Xiaoyi & Li, Qi & Cai, Bofeng & Liu, Guizhen & Pang, Lingyun & Jing, Meng & Guo, Jing, 2024. "Cost assessment and potential evaluation of geologic carbon storage in China based on least-cost path analysis," Applied Energy, Elsevier, vol. 371(C).
    10. Liu, Yang & Cui, Mengying & Gao, Xubin, 2023. "Building up scrap steel bases for perfecting scrap steel industry chain in China: An evolutionary game perspective," Energy, Elsevier, vol. 278(C).
    11. Wu, Tongyuan & Ng, S. Thomas & Chen, Ji, 2025. "Incorporating carbon capture and storage in decarbonizing China's cement sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    12. Lorenzo Rosa & Jeffrey A. Reimer & Marjorie S. Went & Paolo D’Odorico, 2020. "Hydrological limits to carbon capture and storage," Nature Sustainability, Nature, vol. 3(8), pages 658-666, August.
    13. Chi Kong Chyong & Eduardo Italiani & Nikolaos Kazantzis, 2025. "Energy and climate policy implications on the deployment of low-carbon ammonia technologies," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    14. Xin Bo & Min Jia & Xiaoda Xue & Ling Tang & Zhifu Mi & Shouyang Wang & Weigeng Cui & Xiangyu Chang & Jianhui Ruan & Guangxia Dong & Beihai Zhou & Steven J. Davis, 2021. "Effect of strengthened standards on Chinese ironmaking and steelmaking emissions," Nature Sustainability, Nature, vol. 4(9), pages 811-820, September.
    15. Sicong Tian & Jianguo Jiang & Zuotai Zhang & Vasilije Manovic, 2018. "Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    16. Lu Lu & Jeremy S. Guest & Catherine A. Peters & Xiuping Zhu & Greg H. Rau & Zhiyong Jason Ren, 2018. "Wastewater treatment for carbon capture and utilization," Nature Sustainability, Nature, vol. 1(12), pages 750-758, December.
    17. Takuma Watari & Sho Hata & Kenichi Nakajima & Keisuke Nansai, 2023. "Limited quantity and quality of steel supply in a zero-emission future," Nature Sustainability, Nature, vol. 6(3), pages 336-343, March.
    18. Wang, Yihan & Wen, Zongguo & Yao, Jianguo & Doh Dinga, Christian, 2020. "Multi-objective optimization of synergic energy conservation and CO2 emission reduction in China's iron and steel industry under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Sgouris Sgouridis & Michael Carbajales-Dale & Denes Csala & Matteo Chiesa & Ugo Bardi, 2019. "Comparative net energy analysis of renewable electricity and carbon capture and storage," Nature Energy, Nature, vol. 4(6), pages 456-465, June.
    20. Wang, Yihan & Wen, Zongguo & Xu, Mao & Kosajan, Vorada, 2024. "The carbon-energy-water nexus of the carbon capture, utilization, and storage technology deployment schemes: A case study in China's cement industry," Applied Energy, Elsevier, vol. 362(C).
    21. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    22. Simonsen, Kenneth René & Hansen, Dennis Severin & Pedersen, Simon, 2024. "Challenges in CO2 transportation: Trends and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    23. He, Kun & Wang, Li, 2017. "A review of energy use and energy-efficient technologies for the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1022-1039.
    24. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2023. "The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    25. Alexandra Devlin & Jannik Kossen & Haulwen Goldie-Jones & Aidong Yang, 2023. "Global green hydrogen-based steel opportunities surrounding high quality renewable energy and iron ore deposits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    26. Heleen L. Soest & Michel G. J. Elzen & Detlef P. Vuuren, 2021. "Net-zero emission targets for major emitting countries consistent with the Paris Agreement," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    27. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    28. Yuting Zhang & Christopher Jackson & Samuel Krevor, 2024. "The feasibility of reaching gigatonne scale CO2 storage by mid-century," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    29. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yihan Wang & Chen Chen & Yuan Tao & Zongguo Wen, 2025. "Uneven renewable energy supply constrains the decarbonization effects of excessively deployed hydrogen-based DRI technology," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Hu, Hang & Yang, Lingzhi & Yang, Sheng & Zou, Yuchi & Wang, Shuai & Chen, Feng & Guo, Yufeng, 2024. "Development and assessment of an integrated wind energy system for green steelmaking based on electric arc furnace route," Energy, Elsevier, vol. 302(C).
    3. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Chaohui Li & Prajal Pradhan, 2025. "Decoupling of environmental impacts in the iron and steel sector is still needed beyond emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(2), pages 1700-1713, April.
    5. Li, Chengzhe & Zhang, Libo & Wang, Qunwei & Zhou, Dequn, 2024. "Towards low-carbon steel: System dynamics simulation of policies impact on green hydrogen steelmaking in China and the European Union," Energy Policy, Elsevier, vol. 188(C).
    6. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    7. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    8. Liu, Xianmei & Liu, Yuxiang & Bai, Caiquan & Peng, Rui & Chi, Yuanying, 2024. "Pathways for decarbonizing China's iron and steel industry using cost-effective mitigation technologies: An integrated analysis with top-down and bottom-up models," Renewable Energy, Elsevier, vol. 237(PA).
    9. Moglianesi, Andrea & Keppo, Ilkka & Lerede, Daniele & Savoldi, Laura, 2023. "Role of technology learning in the decarbonization of the iron and steel sector: An energy system approach using a global-scale optimization model," Energy, Elsevier, vol. 274(C).
    10. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    11. Wang, Yihan & Wen, Zongguo & Xu, Mao & Kosajan, Vorada, 2024. "The carbon-energy-water nexus of the carbon capture, utilization, and storage technology deployment schemes: A case study in China's cement industry," Applied Energy, Elsevier, vol. 362(C).
    12. Yuan, Yuxing & Na, Hongming & Chen, Chuang & Qiu, Ziyang & Sun, Jingchao & Zhang, Lei & Du, Tao & Yang, Yuhang, 2024. "Status, challenges, and prospects of energy efficiency improvement methods in steel production: A multi-perspective review," Energy, Elsevier, vol. 304(C).
    13. Shuangping Wu & Anjun Xu, 2021. "Calculation Method of Energy Saving in Process Engineering: A Case Study of Iron and Steel Production Process," Energies, MDPI, vol. 14(18), pages 1-15, September.
    14. Hao Li & Pengru Fan & Yukun Wang & Yang Lu & Feng Chen & Haotian Zhang & Bin Zhang & Bo Wang & Zhaohua Wang, 2024. "Integrated assessment models for resource–environment–economy coordinated development," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(3), May.
    15. Hörbe Emanuelsson, Anna & Rootzén, Johan & Johnsson, Filip, 2025. "Financing high-cost measures for deep emission cuts in the basic materials industry – Proposal for a value chain transition fund," Energy Policy, Elsevier, vol. 196(C).
    16. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    17. Zhuyuan Wang & Ting Hu & Mike Tebyetekerwa & Xiangkang Zeng & Fan Du & Yuan Kang & Xuefeng Li & Hao Zhang & Huanting Wang & Xiwang Zhang, 2024. "Electricity generation from carbon dioxide adsorption by spatially nanoconfined ion separation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Di Xu & Wenpeng Lin, 2025. "Carbon Emission Forecasts Under the Scenario of a 1.5 °C Increase: A Multi-National Perspective," Sustainability, MDPI, vol. 17(8), pages 1-13, April.
    20. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59205-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.