IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225010230.html
   My bibliography  Save this article

Study on the coupling of the iron and steel industry with renewable energy for low-carbon production: A case study of matching steel plants with photovoltaic power plants in China

Author

Listed:
  • Wang, Peng-Tao
  • Xu, Qing-Chuang
  • Wang, Fei-Yin
  • Xu, Mao

Abstract

Achieving the Dual Carbon Targets is a core strategy for China's response to climate change. As one of the world's largest carbon dioxide (CO2) emitters, low-carbon transformation of iron and steel industry (ISI) is crucial for reaching these goals. The low-carbon production pathway through the coupling of ISI with photovoltaic power systems is explored in this study. The capacity and carbon emissions of 380 steel plants are investigated, and the annual power generation of 10,345 photovoltaic systems is estimated. SP3G/D matching and EDSAC evaluation models are developed to explore the effects of different electricity substitution rates on low-carbon steel production. Results show that in 2021, China's crude steel output was 873 Mt, emitting approximately 1.626 Gt of CO2. With 100 % electricity substitution, the annual reduction could reach up to 310 Mt, but the actual number of plants suitable for retrofitting is limited by geographic factors. Scenario analysis identifies east coastal steel plants as the most suitable for retrofitting. In the baseline scenario, the steel sector could achieve up to 63.98 Mt of annual reduction, which would decrease to 32.25 Mt if cost optimization is prioritized. This study provides a framework and policy recommendations to facilitate China's ISI low-carbon transformation, with significant theoretical and practical value.

Suggested Citation

  • Wang, Peng-Tao & Xu, Qing-Chuang & Wang, Fei-Yin & Xu, Mao, 2025. "Study on the coupling of the iron and steel industry with renewable energy for low-carbon production: A case study of matching steel plants with photovoltaic power plants in China," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010230
    DOI: 10.1016/j.energy.2025.135381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Changwan & Li, Kai & Gao, Shikang & Li, Jiayu & Mao, Yifan, 2024. "CO2 abatement feasibility for blast furnace CCUS retrofits in BF-BOF steel plants in China," Energy, Elsevier, vol. 294(C).
    2. Yu, Biying & Dai, Ying & Fu, Jiahao & Qi, Jiahong & Li, Xia, 2025. "Industrial risks assessment for the large-scale development of electric arc furnace steelmaking technology," Applied Energy, Elsevier, vol. 377(PC).
    3. Han, Yongming & Cao, Lian & Guo, Qing & Geng, Zhiqiang & Yang, Weiyang & Fan, Jinzhen & Liu, Min, 2024. "Economy and carbon dioxide emissions effects of energy structures in China: Evidence based on a novel AHP-SBMDEA model," Energy, Elsevier, vol. 290(C).
    4. Liu, Xianmei & Li, Jialin & Bai, Caiquan & Peng, Rui & Chi, Yuanying & Liu, Yuxiang, 2024. "Optimum low-carbon transformation pathways of China's iron and steel industry towards carbon neutrality based on a dynamic CGE model," Energy, Elsevier, vol. 313(C).
    5. Wang, Ke & Liu, Fangming & Liu, Junling, 2025. "Techno-economic assessment of different clean hydrogen development pathways across industries in China," Applied Energy, Elsevier, vol. 382(C).
    6. Xi Yang & Chris P. Nielsen & Shaojie Song & Michael B. McElroy, 2022. "Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen," Nature Energy, Nature, vol. 7(10), pages 955-965, October.
    7. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    8. Liu, Xianmei & Liu, Yuxiang & Bai, Caiquan & Peng, Rui & Chi, Yuanying, 2024. "Pathways for decarbonizing China's iron and steel industry using cost-effective mitigation technologies: An integrated analysis with top-down and bottom-up models," Renewable Energy, Elsevier, vol. 237(PA).
    9. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Qiu, Ziyang & Yuan, Yuxing & He, Jianfei & Li, Yingnan & Wang, Yisong & Du, Tao, 2021. "A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry," Energy, Elsevier, vol. 235(C).
    10. Meng, Fan & Rong, Guoqiang & Zhao, Ruiji & Chen, Bo & Xu, Xiaoyun & Qiu, Hao & Cao, Xinde & Zhao, Ling, 2024. "Incorporating biochar into fuels system of iron and steel industry: carbon emission reduction potential and economic analysis," Applied Energy, Elsevier, vol. 356(C).
    11. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Qiu, Tianzhi & Wang, Lunche & Lu, Yunbo & Zhang, Ming & Qin, Wenmin & Wang, Shaoqiang & Wang, Lizhe, 2022. "Potential assessment of photovoltaic power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Li, Yaowang & Yang, Xuxin & Du, Ershun & Liu, Yuliang & Zhang, Shixu & Yang, Chen & Zhang, Ning & Liu, Chang, 2024. "A review on carbon emission accounting approaches for the electricity power industry," Applied Energy, Elsevier, vol. 359(C).
    14. Li, Yibo & Li, Juan & Sun, Mei & Guo, Yanzi & Cheng, Faxin & Gao, Cuixia, 2024. "Analysis of carbon neutrality technology path selection in the steel industry under policy incentives," Energy, Elsevier, vol. 292(C).
    15. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.
    16. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    18. Chong, Shijia & Wu, Jing & Chang, I-Shin, 2024. "Cost accounting and economic competitiveness evaluation of photovoltaic power generation in China —— based on the system levelized cost of electricity," Renewable Energy, Elsevier, vol. 222(C).
    19. Lu, Shaofeng & Liu, Zhengjian & Wang, Yaozu & Zhang, Jianliang, 2024. "Towards green steel-energy and CO2 assessment of low carbon steelmaking via hydrogen based shaft furnace direct reduction process," Energy, Elsevier, vol. 309(C).
    20. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    21. Hu, Hang & Yang, Lingzhi & Yang, Sheng & Zou, Yuchi & Wang, Shuai & Chen, Feng & Guo, Yufeng, 2024. "Development and assessment of an integrated wind energy system for green steelmaking based on electric arc furnace route," Energy, Elsevier, vol. 302(C).
    22. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    23. Li, Ke & Zou, Danyu & Li, Hailing, 2023. "Environmental regulation and green technical efficiency: A process-level data envelopment analysis from Chinese iron and steel enterprises," Energy, Elsevier, vol. 277(C).
    24. Wang, Peng-Tao & Xu, Qing-Chuang & Wang, Fei-Yin & Xu, Mao, 2024. "Investigating the impacts of the Dual Carbon Targets on energy and carbon flows in China," Energy, Elsevier, vol. 313(C).
    25. Zhang, Yujie & Yue, Qiang & Wang, Huanyu & Wang, Heming & Du, Tao & Wang, Qi & Ji, Wei, 2025. "Analysis of carbon emission and energy consumption transfer characteristics of China's iron and steel industry," Energy, Elsevier, vol. 318(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Yuxing Yuan & Su Yan & Hang Cao & Tao Du, 2025. "Advances in Modeling and Optimization of Intelligent Power Systems Integrating Renewable Energy in the Industrial Sector: A Multi-Perspective Review," Energies, MDPI, vol. 18(10), pages 1-50, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peng-Tao & Xu, Qing-Chuang & Wang, Fei-Yin & Xu, Mao, 2024. "Investigating the impacts of the Dual Carbon Targets on energy and carbon flows in China," Energy, Elsevier, vol. 313(C).
    2. Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    3. Hu, Hang & Yang, Lingzhi & Yang, Sheng & Zou, Yuchi & Wang, Shuai & Chen, Feng & Guo, Yufeng, 2024. "Development and assessment of an integrated wind energy system for green steelmaking based on electric arc furnace route," Energy, Elsevier, vol. 302(C).
    4. Zhou, Wenlong & Fan, Wenrong & Lan, Rujia & Su, Wenlong & Fan, Jing-Li, 2025. "Retrofitted CCS technologies enhance economy, security, and equity in achieving carbon zero in power sector," Applied Energy, Elsevier, vol. 378(PA).
    5. Yihan Wang & Chen Chen & Yuan Tao & Zongguo Wen, 2025. "Uneven renewable energy supply constrains the decarbonization effects of excessively deployed hydrogen-based DRI technology," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    6. Yu, Biying & Dai, Ying & Fu, Jiahao & Qi, Jiahong & Li, Xia, 2025. "Industrial risks assessment for the large-scale development of electric arc furnace steelmaking technology," Applied Energy, Elsevier, vol. 377(PC).
    7. Wang, Peng-Tao & Zhang, Yi-Xiang & Wang, Fei-Yin & Xu, Mao, 2025. "Carbon capture, utilization, and storage in China's high-emission industries: Optimal deployment under carbon neutrality goals," Energy, Elsevier, vol. 323(C).
    8. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    9. Shuangping Wu & Anjun Xu, 2021. "Calculation Method of Energy Saving in Process Engineering: A Case Study of Iron and Steel Production Process," Energies, MDPI, vol. 14(18), pages 1-15, September.
    10. Danlu Xu & Zhoubin Liu & Jiahui Zhu & Qin Fang & Rui Shan, 2023. "Linking Cost Decline and Demand Surge in the Hydrogen Market: A Case Study in China," Energies, MDPI, vol. 16(12), pages 1-13, June.
    11. Ren, Lei & Shi, Hong & Yang, Yifang & Liu, Jianzhe & Ou, Xunmin, 2025. "Carbon reduction cost of hydrogen steelmaking technology in China," Energy, Elsevier, vol. 320(C).
    12. Liu, Bingchun & Zhao, Shunfan & Zheng, Shize & Zhang, Fukai & Li, Zefeng & Gao, Xu & Wang, Ying, 2025. "Assessing the potential impact of aerosol scenarios for rooftop PV regional deployment," Renewable Energy, Elsevier, vol. 246(C).
    13. Lee, Hwarang, 2023. "Decarbonization strategies for steel production with uncertainty in hydrogen direct reduction," Energy, Elsevier, vol. 283(C).
    14. Wang, Ke & Liu, Fangming & Liu, Junling, 2025. "Techno-economic assessment of different clean hydrogen development pathways across industries in China," Applied Energy, Elsevier, vol. 382(C).
    15. Yuan, Yuxing & Na, Hongming & Chen, Chuang & Qiu, Ziyang & Sun, Jingchao & Zhang, Lei & Du, Tao & Yang, Yuhang, 2024. "Status, challenges, and prospects of energy efficiency improvement methods in steel production: A multi-perspective review," Energy, Elsevier, vol. 304(C).
    16. Yang, Lingyu & Zhang, Jing & Li, Xinbei & Zhu, Nenggao & Liu, Yu, 2024. "The moderating effect of emission reduction policies on CCS mitigation efficiency," Applied Energy, Elsevier, vol. 376(PB).
    17. Chen, Junwen & Gong, Qingshan & Cao, Zhanlong & Liu, Min & Xie, Minchao & Zhao, Gang, 2025. "Three-layer design and optimization of CO2 emission reduction in the iron and steel industry based on ‘BRL’ industrial metabolism," Energy, Elsevier, vol. 315(C).
    18. Han, Yongming & Ji, Wenjie & Liu, Lin & Cao, Lian & Ping, Weiying & Zeyu chu, & Fan, Jinzhen, 2025. "Impact of the national economy and air pollutant emissions on Chinese energy mix: Evidence from an SBMDEA-TOPSIS model," Energy, Elsevier, vol. 325(C).
    19. Clara Bachorz & Philipp C. Verpoort & Gunnar Luderer & Falko Ueckerdt, 2025. "Exploring techno-economic landscapes of abatement options for hard-to-electrify sectors," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    20. Li, Chengzhe & Zhang, Libo & Wang, Qunwei & Zhou, Dequn, 2024. "Towards low-carbon steel: System dynamics simulation of policies impact on green hydrogen steelmaking in China and the European Union," Energy Policy, Elsevier, vol. 188(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.