IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224038015.html
   My bibliography  Save this article

Optimum low-carbon transformation pathways of China's iron and steel industry towards carbon neutrality based on a dynamic CGE model

Author

Listed:
  • Liu, Xianmei
  • Li, Jialin
  • Bai, Caiquan
  • Peng, Rui
  • Chi, Yuanying
  • Liu, Yuxiang

Abstract

Low-carbon transformation pathways of the iron and steel industry play a significant role towards achieving the carbon neutrality target by 2060. This study explores the low-carbon transformation pathways of China's iron and steel industry in 2060 under different emission reduction policy scenarios by adopting a modified dynamic computable general equilibrium model. We found that: (1) China's crude steel production will peak in 2024–2026, with a value of approximately 10.49 × 102–11.11 × 102 Mt. (2) Four integrated policy scenarios (C1T1E2: carbon trading policy, carbon tax, and renewable energy policy; C1T6E2; C6T1E2; and C6T6E2) have the most potential to achieve the carbon neutrality target by 2060; their remaining CO2 emissions are 2.52 × 102, 1.99 × 102, 1.21 × 102 and 0.69 × 102 in 2060, respectively. (3) The projected CO2 emissions per ton steel from 2020 to 2060, of which the impact degree in the carbon trading market policy scenario shows the most difference, fluctuated from 0.81 t CO2/t under the C1 scenario to 0.42 t CO2/t under the C6 scenario in 2060. (4) The reduction degree of energy consumption per ton steel performed the best in the integrated policy scenarios, of which the integrated C6T6E2 scenario (82 kgce/t in 2060) had the most effect on energy consumption per ton steel, followed by C6T1E2 (101 kgce/t) and C1T6E2 (125 kgce/t).

Suggested Citation

  • Liu, Xianmei & Li, Jialin & Bai, Caiquan & Peng, Rui & Chi, Yuanying & Liu, Yuxiang, 2024. "Optimum low-carbon transformation pathways of China's iron and steel industry towards carbon neutrality based on a dynamic CGE model," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038015
    DOI: 10.1016/j.energy.2024.134023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224038015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Boqiang & Jia, Zhijie, 2018. "The energy, environmental and economic impacts of carbon tax rate and taxation industry: A CGE based study in China," Energy, Elsevier, vol. 159(C), pages 558-568.
    2. Liu, Xianmei & Peng, Rui & Bai, Caiquan & Chi, Yuanying & Liu, Yuxiang, 2023. "Economic cost, energy transition, and pollutant mitigation: The effect of China's different mitigation pathways toward carbon neutrality," Energy, Elsevier, vol. 275(C).
    3. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    4. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    5. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    6. Guo, Z.C. & Fu, Z.X., 2010. "Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China," Energy, Elsevier, vol. 35(11), pages 4356-4360.
    7. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    8. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    9. Tianyang Lei & Daoping Wang & Xiang Yu & Shijun Ma & Weichen Zhao & Can Cui & Jing Meng & Shu Tao & Dabo Guan, 2023. "Global iron and steel plant CO2 emissions and carbon-neutrality pathways," Nature, Nature, vol. 622(7983), pages 514-520, October.
    10. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    11. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    12. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & Yuan, Yuxing & Du, Tao, 2022. "Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process," Energy, Elsevier, vol. 257(C).
    13. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Zhang, Yue-Jun & Wang, Wei, 2021. "How does China's carbon emissions trading (CET) policy affect the investment of CET-covered enterprises?," Energy Economics, Elsevier, vol. 98(C).
    15. Zhu, Lei & Zhang, Xiao-Bing & Li, Yuan & Wang, Xu & Guo, Jianxin, 2017. "Can an emission trading scheme promote the withdrawal of outdated capacity in energy-intensive sectors? A case study on China's iron and steel industry," Energy Economics, Elsevier, vol. 63(C), pages 332-347.
    16. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Jia, Zhijie, 2019. "How does tax system on energy industries affect energy demand, CO2 emissions, and economy in China?," Energy Economics, Elsevier, vol. 84(C).
    2. Lin, Boqiang & Jia, Zhijie, 2019. "Impacts of carbon price level in carbon emission trading market," Applied Energy, Elsevier, vol. 239(C), pages 157-170.
    3. Shuangping Wu & Anjun Xu, 2021. "Calculation Method of Energy Saving in Process Engineering: A Case Study of Iron and Steel Production Process," Energies, MDPI, vol. 14(18), pages 1-15, September.
    4. Wu, Rongxin & Lin, Boqiang, 2021. "Does industrial agglomeration improve effective energy service: An empirical study of China’s iron and steel industry," Applied Energy, Elsevier, vol. 295(C).
    5. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    6. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Lin, Boqiang & Jia, Zhijie, 2018. "Impact of quota decline scheme of emission trading in China: A dynamic recursive CGE model," Energy, Elsevier, vol. 149(C), pages 190-203.
    8. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2023. "The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Liu, Xianmei & Peng, Rui & Bai, Caiquan & Chi, Yuanying & Liu, Yuxiang, 2023. "Economic cost, energy transition, and pollutant mitigation: The effect of China's different mitigation pathways toward carbon neutrality," Energy, Elsevier, vol. 275(C).
    10. Chen, Demin & Li, Jiaqi & Wang, Zhao & Lu, Biao & Chen, Guang, 2022. "Hierarchical model to find the path reducing CO2 emissions of integrated iron and steel production," Energy, Elsevier, vol. 258(C).
    11. Yuan, Yuxing & Na, Hongming & Chen, Chuang & Qiu, Ziyang & Sun, Jingchao & Zhang, Lei & Du, Tao & Yang, Yuhang, 2024. "Status, challenges, and prospects of energy efficiency improvement methods in steel production: A multi-perspective review," Energy, Elsevier, vol. 304(C).
    12. Zhang, Lirong & Li, Yakun & Jia, Zhijie, 2018. "Impact of carbon allowance allocation on power industry in China’s carbon trading market: Computable general equilibrium based analysis," Applied Energy, Elsevier, vol. 229(C), pages 814-827.
    13. Hongtao Ren & Wenji Zhou & Marek Makowski & Shaohui Zhang & Yadong Yu & Tieju Ma, 2023. "A multi-criteria decision support model for adopting energy efficiency technologies in the iron and steel industry," Annals of Operations Research, Springer, vol. 325(2), pages 1111-1132, June.
    14. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    15. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    16. Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Liu, Yan & Yang, Jian & Wang, Jin & Cheng, Zhi-long & Wang, Qiu-wang, 2014. "Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed," Energy, Elsevier, vol. 67(C), pages 370-380.
    18. Du, Huibin & Li, Qun & Liu, Xi & Peng, Binbin & Southworth, Frank, 2021. "Costs and potentials of reducing CO2 emissions in China's transport sector: Findings from an energy system analysis," Energy, Elsevier, vol. 234(C).
    19. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    20. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.