IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics1364032125003120.html
   My bibliography  Save this article

An integrated assessment model for cost-effective long-term decarbonization pathways in China's iron and steel industry

Author

Listed:
  • Wang, Ying
  • Yan, Yuxin
  • Liu, Hanxiao
  • Luo, Xiang
  • Wu, Tao
  • Zheng, Chenghang
  • Lin, Qingyang
  • Gao, Xiang

Abstract

Decarbonization in the iron and steel industry is critical for climate action and sustainable development. Existing research on cost-effective decarbonization technologies is limited, often overlooking optimal multi-technology strategies that balance decarbonization and economic feasibility. We developed an integrated assessment model to optimize long-term decarbonization strategies by evaluating low-carbon technologies based on decarbonization costs, penetration rates, payback times, service life, and benefit-cost ratio. The model aims to identify optimal dynamic development pathways for a series of decarbonization technologies up to 2035, minimizing both costs and carbon emissions through scenarios prioritizing emissions or costs. Under optimal pathways, the aggregate technology decarbonization potential and dynamic trends in industry CO2 emission intensity and costs were analyzed. We examined the impacts of changes in key input parameters, leading to variable multi-technology dynamic development pathways. Our findings indicate that decarbonization costs for BF-BOF (Blast furnace-basic oxygen furnace) and EAF (Electric arc furnace) technologies range from −-0.5 to 0.4 yuan/kgCO2 and -0.3 to −0.02 yuan/kgCO2, demonstrating high economic viability under higher carbon prices. Optimal development pathways suggest significant annual changes within BF-BOF and EAF routes, classifying technologies by cumulative decarbonization potential into advanced, moderate, and conservative categories. Future CO2 emission intensities decrease more significantly in the EAF route, indicating a higher decarbonization capacity, while total costs increased annually due to rising emission costs and declining energy costs. The optimal multi-technology dynamic development pathways are influenced by production routes, carbon prices, and energy supply modes, with cleaner energy reducing the need for aggressive decarbonization technology adoption.

Suggested Citation

  • Wang, Ying & Yan, Yuxin & Liu, Hanxiao & Luo, Xiang & Wu, Tao & Zheng, Chenghang & Lin, Qingyang & Gao, Xiang, 2025. "An integrated assessment model for cost-effective long-term decarbonization pathways in China's iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003120
    DOI: 10.1016/j.rser.2025.115639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125003120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xiong & Chen, Lingen & Feng, Huijun & Qin, Xiaoyong & Sun, Fengrui, 2016. "Constructal design of a blast furnace iron-making process based on multi-objective optimization," Energy, Elsevier, vol. 109(C), pages 137-151.
    2. Xiaoyang Li & Xinyue Zhang, 2025. "Climate Change Exposure and Cash Holdings," Sustainability, MDPI, vol. 17(1), pages 1-35, January.
    3. Jiang, Chuyu & Li, Yating & Zhang, Xuan & Zhao, Yang, 2025. "Climate risk and corporate debt decision," Journal of International Money and Finance, Elsevier, vol. 151(C).
    4. Li, Dong & Lu, Shuai, 2025. "Portfolio climate risk and fund flow performance," Finance Research Letters, Elsevier, vol. 72(C).
    5. Wang, Peng & Li, Wen & Kara, Sami, 2017. "Cradle-to-cradle modeling of the future steel flow in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 45-57.
    6. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    7. Ran Ge & Yu Xia & Liquan Ge & Fei Li, 2025. "Knowledge Graph Analysis in Climate Action Research," Sustainability, MDPI, vol. 17(1), pages 1-30, January.
    8. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    9. Raimund Bleischwitz & Catalina Spataru & Stacy D. VanDeveer & Michael Obersteiner & Ester Voet & Corey Johnson & Philip Andrews-Speed & Tim Boersma & Holger Hoff & Detlef P. Vuuren, 2018. "Resource nexus perspectives towards the United Nations Sustainable Development Goals," Nature Sustainability, Nature, vol. 1(12), pages 737-743, December.
    10. Wang, Yihan & Wen, Zongguo & Yao, Jianguo & Doh Dinga, Christian, 2020. "Multi-objective optimization of synergic energy conservation and CO2 emission reduction in China's iron and steel industry under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    12. Worrell, Ernst & Laitner, John A & Ruth, Michael & Finman, Hodayah, 2003. "Productivity benefits of industrial energy efficiency measures," Energy, Elsevier, vol. 28(11), pages 1081-1098.
    13. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    14. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    15. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    16. Fourné, Marius & Li, Xiang, 2025. "Climate policy and international capital reallocation," IWH Discussion Papers 20/2024, Halle Institute for Economic Research (IWH), revised 2025.
    17. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    18. Alexandra Devlin & Jannik Kossen & Haulwen Goldie-Jones & Aidong Yang, 2023. "Global green hydrogen-based steel opportunities surrounding high quality renewable energy and iron ore deposits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Ma, Zhenbang & Xie, Yanxiang & Wang, Kai & Pu, Guifang, 2025. "Corporate climate risk perception and debt concentration," Finance Research Letters, Elsevier, vol. 77(C).
    20. Thies, Christian & Kieckhäfer, Karsten & Spengler, Thomas S. & Sodhi, Manbir S., 2019. "Operations research for sustainability assessment of products: A review," European Journal of Operational Research, Elsevier, vol. 274(1), pages 1-21.
    21. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    22. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    23. Ren, Ming & Lu, Pantao & Liu, Xiaorui & Hossain, M.S. & Fang, Yanru & Hanaoka, Tatsuya & O'Gallachoir, Brian & Glynn, James & Dai, Hancheng, 2021. "Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality," Applied Energy, Elsevier, vol. 298(C).
    24. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    25. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "The driving forces and potential mitigation of energy-related CO2 emissions in China's metal industry," Resources Policy, Elsevier, vol. 59(C), pages 487-494.
    26. Sheng, Kangling & Wang, Xiaojun & Si, Fangyuan & Zhou, Yue & Liu, Zhao & Hua, Haochen & Wang, Xihao & Duan, Yuge, 2024. "Rational capacity investment for renewable hydrogen-based steelmaking systems: A multi-stage expansion planning strategy," Applied Energy, Elsevier, vol. 372(C).
    27. Erdem Ateş & Selim Şanlısoy, 2025. "The impact of global value chains on climate change," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 27(1), pages 167-185, April.
    28. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    29. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    30. Hu, Rui & Zhang, Qun, 2015. "Study of a low-carbon production strategy in the metallurgical industry in China," Energy, Elsevier, vol. 90(P2), pages 1456-1467.
    31. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    32. Razmjoo, A. & Gakenia Kaigutha, L. & Vaziri Rad, M.A. & Marzband, M. & Davarpanah, A. & Denai, M., 2021. "A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area," Renewable Energy, Elsevier, vol. 164(C), pages 46-57.
    33. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
    34. Sana J. Sous & Yara Al-Hindi & Munqez J. Y. Shtaya & Tareq Sadeq, 2025. "The Impact Of Climate Change On Crop Yield In Palestine," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-9, February.
    35. Wu, Xuecheng & Zhao, Liang & Zhang, Yongxin & Zhao, Lingjie & Zheng, Chenghang & Gao, Xiang & Cen, Kefa, 2016. "Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China," Applied Energy, Elsevier, vol. 184(C), pages 171-183.
    36. Nguyen, Minh Nhat & Liu, Ruipeng & Li, Youwei, 2025. "Performance of energy ETFs and climate risks," Energy Economics, Elsevier, vol. 141(C).
    37. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    2. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    3. Yu, Biying & Dai, Ying & Fu, Jiahao & Qi, Jiahong & Li, Xia, 2025. "Industrial risks assessment for the large-scale development of electric arc furnace steelmaking technology," Applied Energy, Elsevier, vol. 377(PC).
    4. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    5. Li, Yibo & Li, Juan & Sun, Mei & Guo, Yanzi & Cheng, Faxin & Gao, Cuixia, 2024. "Analysis of carbon neutrality technology path selection in the steel industry under policy incentives," Energy, Elsevier, vol. 292(C).
    6. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    7. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Shuangping Wu & Anjun Xu, 2021. "Calculation Method of Energy Saving in Process Engineering: A Case Study of Iron and Steel Production Process," Energies, MDPI, vol. 14(18), pages 1-15, September.
    9. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & Yuan, Yuxing & Du, Tao, 2022. "Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process," Energy, Elsevier, vol. 257(C).
    10. Wu, Ya & Su, JingRong & Li, Ke & Sun, Chuanwang, 2019. "Comparative study on power efficiency of China's provincial steel industry and its influencing factors," Energy, Elsevier, vol. 175(C), pages 1009-1020.
    11. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2021. "Impacts of regional industrial electricity savings on the development of future coal capacity per electricity grid and related air pollution emissions – A case study for China," Applied Energy, Elsevier, vol. 282(PB).
    13. Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.
    14. Li, Zhaoling & Dai, Hancheng & Song, Junnian & Sun, Lu & Geng, Yong & Lu, Keyu & Hanaoka, Tatsuya, 2019. "Assessment of the carbon emissions reduction potential of China's iron and steel industry based on a simulation analysis," Energy, Elsevier, vol. 183(C), pages 279-290.
    15. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    18. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
    19. Xu, Tingting & Huo, Zhaoyi & Wang, Wenjing & Xie, Ning & Li, Lili & Liu, Yingjie & Mu, Lin, 2024. "Evaluation of by-product-gas utilization options for carbon reduction at an integrated iron and steel mill," Energy, Elsevier, vol. 294(C).
    20. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.