IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003219.html
   My bibliography  Save this article

Analysis of carbon neutrality technology path selection in the steel industry under policy incentives

Author

Listed:
  • Li, Yibo
  • Li, Juan
  • Sun, Mei
  • Guo, Yanzi
  • Cheng, Faxin
  • Gao, Cuixia

Abstract

As an energy-intensive industry, the steel industry incentivizes carbon neutrality technology innovation through carbon neutrality policies, thereby promoting the industry's low-carbon transformation. However, how policy promotes technological innovation in the steel industry to achieve net zero emissions is an urgent practical and theoretical problem that needs to be solved. This study constructs a comprehensive model that combines steel demand forecasting, technology evaluation, and bottom-up technology selection models. Described the cost-effectiveness of emission reduction technologies from a technical and economic perspective, quantitatively analyzed the emission reduction potential and evolution path of carbon neutrality technology under policy incentives in the steel industry, and provided policy support and specific deployment time for different technologies. The results indicate that under the scenario of strong subsidies and carbon prices, by 2060, the share of traditional long-process steelmaking was only 25 %, and the CO2 emissions per unit of crude steel were 0.88t CO2/t. At the same time, the implementation of policies has increased the cumulative emission reduction of the steel industry by 1.56 times from 2022 to 2060.

Suggested Citation

  • Li, Yibo & Li, Juan & Sun, Mei & Guo, Yanzi & Cheng, Faxin & Gao, Cuixia, 2024. "Analysis of carbon neutrality technology path selection in the steel industry under policy incentives," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003219
    DOI: 10.1016/j.energy.2024.130550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.