IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp137-151.html
   My bibliography  Save this article

Constructal design of a blast furnace iron-making process based on multi-objective optimization

Author

Listed:
  • Liu, Xiong
  • Chen, Lingen
  • Feng, Huijun
  • Qin, Xiaoyong
  • Sun, Fengrui

Abstract

For the fixed total raw material cost and based on constructal theory and finite time thermodynamics, a BFIM (blast furnace iron-making) process is optimized by taking a complex function as optimization objective. The complex function is integrated with HM (hot metal) yield and useful energy of the BF (blast furnace). The optimal cost distribution of raw materials (namely “generalized optimal construct”) is obtained. The effects of some parameters, such as oxygen enrichment, blast temperature and pulverized coal dosage, on the optimization results are analyzed. The results show that the HM yield, useful energy and complex function are, respectively, increased by 3.13%, 2.66% and 2.90% after generalized constructal optimization. The utilization efficiencies of the BFG (blast furnace gas) and slag are 41.3% and 57.1%, respectively, which means that the utilization potentials of the BFG and slag can be further exploited. Increasing pulverized coal dosage and decreasing the agglomerate ratio can increase the complex function. The performance the BFIM process can be improved by adjusting the oxygen enrichment, blast temperature, blast dosage, pressure ratio of the Brayton cycle's air compressor and relative pressure drop of the air compressor inlet to their optimal values, respectively, which are new findings of this paper.

Suggested Citation

  • Liu, Xiong & Chen, Lingen & Feng, Huijun & Qin, Xiaoyong & Sun, Fengrui, 2016. "Constructal design of a blast furnace iron-making process based on multi-objective optimization," Energy, Elsevier, vol. 109(C), pages 137-151.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:137-151
    DOI: 10.1016/j.energy.2016.04.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630514X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xiong & Chen, Lingen & Qin, Xiaoyong & Sun, Fengrui, 2015. "Exergy loss minimization for a blast furnace with comparative analyses for energy flows and exergy flows," Energy, Elsevier, vol. 93(P1), pages 10-19.
    2. Feng, Huijun & Chen, Lingen & Xie, Zhihui & Ding, Zemin & Sun, Fengrui, 2014. "Generalized constructal optimization for solidification heat transfer process of slab continuous casting based on heat loss rate," Energy, Elsevier, vol. 66(C), pages 991-998.
    3. Meng, Fankai & Chen, Lingen & Sun, Fengrui & Yang, Bo, 2014. "Thermoelectric power generation driven by blast furnace slag flushing water," Energy, Elsevier, vol. 66(C), pages 965-972.
    4. Chen, Lingen & Li, Ye & Sun, Fengrui & Wu, Chih, 2004. "Power optimization of open-cycle regenerator gas-turbine power-plants," Applied Energy, Elsevier, vol. 78(2), pages 199-218, June.
    5. Lin, Boqiang & Wang, Xiaolei, 2014. "Promoting energy conservation in China's iron & steel sector," Energy, Elsevier, vol. 73(C), pages 465-474.
    6. Lingen Chen & Wanli Zhang & Fengrui Sun, 2014. "Thermodynamic optimization of an open cycle of an externally fired micro gas turbine. Part 2: Performance optimization," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(3), pages 189-194.
    7. Liu, Xiong & Feng, Huijun & Chen, Lingen & Qin, Xiaoyong & Sun, Fengrui, 2016. "Hot metal yield optimization of a blast furnace based on constructal theory," Energy, Elsevier, vol. 104(C), pages 33-41.
    8. Xiong, Bing & Chen, Lingen & Meng, Fankai & Sun, Fengrui, 2014. "Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat," Energy, Elsevier, vol. 77(C), pages 562-569.
    9. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Liuxi & Xiao, Junfeng & Wang, Shunsen & Gao, Song & Duan, Jingyao & Mao, Jingru, 2017. "Gas-particle flows and erosion characteristic of large capacity dry top gas pressure recovery turbine," Energy, Elsevier, vol. 120(C), pages 498-506.
    2. Zhang, Wei & Zhang, Juhua & Xue, Zhengliang, 2017. "Exergy analyses of the oxygen blast furnace with top gas recycling process," Energy, Elsevier, vol. 121(C), pages 135-146.
    3. Feng, Huijun & Xie, Zhuojun & Chen, Lingen & Wu, Zhixiang & Xia, Shaojun, 2020. "Constructal design for supercharged boiler superheater," Energy, Elsevier, vol. 191(C).
    4. Liu, Changxin & Xie, Zhihui & Sun, Fengrui & Chen, Lingen, 2017. "Exergy analysis and optimization of coking process," Energy, Elsevier, vol. 139(C), pages 694-705.
    5. Yuan, Yuxing & Na, Hongming & Du, Tao & Qiu, Ziyang & Sun, Jingchao & Yan, Tianyi & Che, Zichang, 2023. "Multi-objective optimization and analysis of material and energy flows in a typical steel plant," Energy, Elsevier, vol. 263(PD).
    6. Zeng, Yujiao & Xiao, Xin & Li, Jie & Sun, Li & Floudas, Christodoulos A. & Li, Hechang, 2018. "A novel multi-period mixed-integer linear optimization model for optimal distribution of byproduct gases, steam and power in an iron and steel plant," Energy, Elsevier, vol. 143(C), pages 881-899.
    7. Jabari, Farkhondeh & Mohammadi-ivatloo, Behnam & Bannae Sharifian, Mohammad Bagher & Nojavan, Sayyad, 2018. "Design and robust optimization of a novel industrial continuous heat treatment furnace," Energy, Elsevier, vol. 142(C), pages 896-910.
    8. Yang, Fusheng & Wu, Zhen & Liu, Shengzhe & Zhang, Yang & Wang, Geoff & Zhang, Zaoxiao & Wang, Yuqi, 2018. "Theoretical formulation and performance analysis of a novel hydride heat Pump(HHP) integrated heat recovery system," Energy, Elsevier, vol. 163(C), pages 208-220.
    9. Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.
    10. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & Yuan, Yuxing & Du, Tao, 2022. "Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Changxin & Xie, Zhihui & Sun, Fengrui & Chen, Lingen, 2017. "Exergy analysis and optimization of coking process," Energy, Elsevier, vol. 139(C), pages 694-705.
    2. Liu, Xiong & Feng, Huijun & Chen, Lingen & Qin, Xiaoyong & Sun, Fengrui, 2016. "Hot metal yield optimization of a blast furnace based on constructal theory," Energy, Elsevier, vol. 104(C), pages 33-41.
    3. Wu, Junnian & Wang, Ruiqi & Pu, Guangying & Qi, Hang, 2016. "Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network," Applied Energy, Elsevier, vol. 183(C), pages 430-444.
    4. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    5. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).
    6. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Yılmaz, Kadir & Kayfeci, Muhammet & Keçebaş, Ali, 2019. "Thermodynamic evaluation of a waste gas-fired steam power plant in an iron and steel facility using enhanced exergy analysis," Energy, Elsevier, vol. 169(C), pages 684-695.
    8. Ma, Hongting & Yin, Lihui & Shen, Xiaopeng & Lu, Wenqian & Sun, Yuexia & Zhang, Yufeng & Deng, Na, 2016. "Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery," Applied Energy, Elsevier, vol. 169(C), pages 177-186.
    9. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    10. Xu, Bin & Lin, Boqiang, 2016. "Reducing CO2 emissions in China's manufacturing industry: Evidence from nonparametric additive regression models," Energy, Elsevier, vol. 101(C), pages 161-173.
    11. Massaguer, Eduard & Massaguer, Albert & Pujol, Toni & Gonzalez, Jose Ramon & Montoro, Lino, 2017. "Modelling and analysis of longitudinal thermoelectric energy harvesters considering series-parallel interconnection effect," Energy, Elsevier, vol. 129(C), pages 59-69.
    12. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
    13. Zeng, Yujiao & Xiao, Xin & Li, Jie & Sun, Li & Floudas, Christodoulos A. & Li, Hechang, 2018. "A novel multi-period mixed-integer linear optimization model for optimal distribution of byproduct gases, steam and power in an iron and steel plant," Energy, Elsevier, vol. 143(C), pages 881-899.
    14. Xu, Bin & Lin, Boqiang, 2016. "Regional differences in the CO2 emissions of China's iron and steel industry: Regional heterogeneity," Energy Policy, Elsevier, vol. 88(C), pages 422-434.
    15. Liu, Yan & Yang, Jian & Wang, Jing-yu & Ding, Xu-gang & Cheng, Zhi-long & Wang, Qiu-wang, 2015. "Prediction, parametric analysis and bi-objective optimization of waste heat utilization in sinter cooling bed using evolutionary algorithm," Energy, Elsevier, vol. 90(P1), pages 24-35.
    16. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    17. Feng, Huijun & Xie, Zhuojun & Chen, Lingen & Wu, Zhixiang & Xia, Shaojun, 2020. "Constructal design for supercharged boiler superheater," Energy, Elsevier, vol. 191(C).
    18. Manikandan, S. & Kaushik, S.C., 2016. "The influence of Thomson effect in the performance optimization of a two stage thermoelectric generator," Energy, Elsevier, vol. 100(C), pages 227-237.
    19. Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.
    20. Sun, Yongqi & Shen, Hongwei & Wang, Hao & Wang, Xidong & Zhang, Zuotai, 2014. "Experimental investigation and modeling of cooling processes of high temperature slags," Energy, Elsevier, vol. 76(C), pages 761-767.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:137-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.