Three-layer design and optimization of CO2 emission reduction in the iron and steel industry based on ‘BRL’ industrial metabolism
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.134387
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Liu, Xiong & Chen, Lingen & Feng, Huijun & Qin, Xiaoyong & Sun, Fengrui, 2016. "Constructal design of a blast furnace iron-making process based on multi-objective optimization," Energy, Elsevier, vol. 109(C), pages 137-151.
- Qiu, Ziyang & Yue, Qiang & Yan, Tianyi & Wang, Qi & Sun, Jingchao & Yuan, Yuxing & Che, Zichang & Wang, Yisong & Du, Tao, 2023. "Gas utilization optimization and exergy analysis of hydrogen metallurgical shaft furnace," Energy, Elsevier, vol. 263(PC).
- Qiu, Ziyang & Du, Tao & Yue, Qiang & Na, Hongming & Sun, Jingchao & Yuan, Yuxing & Che, Zichang & Wang, Yisong & Li, Yingnan, 2023. "A multi-parameters evaluation on exergy for hydrogen metallurgy," Energy, Elsevier, vol. 281(C).
- Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
- Wang, Yihan & Wen, Zongguo & Yao, Jianguo & Doh Dinga, Christian, 2020. "Multi-objective optimization of synergic energy conservation and CO2 emission reduction in China's iron and steel industry under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Hasanbeigi, Ali & Arens, Marlene & Cardenas, Jose Carlos Rojas & Price, Lynn & Triolo, Ryan, 2016. "Comparison of carbon dioxide emissions intensity of steel production in China, Germany, Mexico, and the United States," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 127-139.
- Na, Hongming & Sun, Jingchao & Qiu, Ziyang & He, Jianfei & Yuan, Yuxing & Yan, Tianyi & Du, Tao, 2021. "A novel evaluation method for energy efficiency of process industry — A case study of typical iron and steel manufacturing process," Energy, Elsevier, vol. 233(C).
- Cai, Lei & He, Tianzhi & Xiang, Yanlei & Guan, Yanwen, 2020. "Study on the reaction pathways of steam methane reforming for H2 production," Energy, Elsevier, vol. 207(C).
- Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
- Na, Hongming & Sun, Jingchao & Qiu, Ziyang & Yuan, Yuxing & Du, Tao, 2022. "Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process," Energy, Elsevier, vol. 257(C).
- Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
- Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan, Yuxing & Na, Hongming & Du, Tao & Qiu, Ziyang & Sun, Jingchao & Yan, Tianyi & Che, Zichang, 2023. "Multi-objective optimization and analysis of material and energy flows in a typical steel plant," Energy, Elsevier, vol. 263(PD).
- Na, Hongming & Sun, Jingchao & Qiu, Ziyang & Yuan, Yuxing & Du, Tao, 2022. "Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process," Energy, Elsevier, vol. 257(C).
- Yuan, Yuxing & Na, Hongming & Chen, Chuang & Qiu, Ziyang & Sun, Jingchao & Zhang, Lei & Du, Tao & Yang, Yuhang, 2024. "Status, challenges, and prospects of energy efficiency improvement methods in steel production: A multi-perspective review," Energy, Elsevier, vol. 304(C).
- Wang, Ying & Yan, Yuxin & Liu, Hanxiao & Luo, Xiang & Wu, Tao & Zheng, Chenghang & Lin, Qingyang & Gao, Xiang, 2025. "An integrated assessment model for cost-effective long-term decarbonization pathways in China's iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
- Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
- Qiu, Ziyang & Sun, Jingchao & Du, Tao & Na, Hongming & Zhang, Lei & Yuan, Yuxing & Wang, Yisong, 2024. "Impact of hydrogen metallurgy on the current iron and steel industry: A comprehensive material-exergy-emission flow analysis," Applied Energy, Elsevier, vol. 356(C).
- Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
- Wang, Peng-Tao & Xu, Qing-Chuang & Wang, Fei-Yin & Xu, Mao, 2025. "Study on the coupling of the iron and steel industry with renewable energy for low-carbon production: A case study of matching steel plants with photovoltaic power plants in China," Energy, Elsevier, vol. 320(C).
- Liu, Shuhan & Sun, Wenqiang, 2023. "Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation," Energy, Elsevier, vol. 262(PA).
- Liu, Shuhan & Sun, Wenqiang, 2025. "Knowledge- and data-driven prediction of blast furnace gas generation and consumption in iron and steel sites," Applied Energy, Elsevier, vol. 390(C).
- Yu, Biying & Dai, Ying & Fu, Jiahao & Qi, Jiahong & Li, Xia, 2025. "Industrial risks assessment for the large-scale development of electric arc furnace steelmaking technology," Applied Energy, Elsevier, vol. 377(PC).
- Harvey, L.D. Danny, 2024. "A bottom-up assessment of recent (2016–20) energy use by the global iron and steel industry constrained to match a top-down (International Energy Agency) assessment," Energy, Elsevier, vol. 293(C).
- Liu, Xianmei & Liu, Yuxiang & Bai, Caiquan & Peng, Rui & Chi, Yuanying, 2024. "Pathways for decarbonizing China's iron and steel industry using cost-effective mitigation technologies: An integrated analysis with top-down and bottom-up models," Renewable Energy, Elsevier, vol. 237(PA).
- Hu, Hang & Yang, Lingzhi & Yang, Sheng & Zou, Yuchi & Wang, Shuai & Chen, Feng & Guo, Yufeng, 2024. "Development and assessment of an integrated wind energy system for green steelmaking based on electric arc furnace route," Energy, Elsevier, vol. 302(C).
- Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
- Shuangping Wu & Anjun Xu, 2021. "Calculation Method of Energy Saving in Process Engineering: A Case Study of Iron and Steel Production Process," Energies, MDPI, vol. 14(18), pages 1-15, September.
- Wang, Yihan & Wen, Zongguo & Cao, Xin & Dinga, Christian Doh, 2022. "Is information and communications technology effective for industrial energy conservation and emission reduction? Evidence from three energy-intensive industries in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Xu, Tingting & Huo, Zhaoyi & Wang, Wenjing & Xie, Ning & Li, Lili & Liu, Yingjie & Mu, Lin, 2024. "Evaluation of by-product-gas utilization options for carbon reduction at an integrated iron and steel mill," Energy, Elsevier, vol. 294(C).
- Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000295. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.