IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223016730.html
   My bibliography  Save this article

A multi-parameters evaluation on exergy for hydrogen metallurgy

Author

Listed:
  • Qiu, Ziyang
  • Du, Tao
  • Yue, Qiang
  • Na, Hongming
  • Sun, Jingchao
  • Yuan, Yuxing
  • Che, Zichang
  • Wang, Yisong
  • Li, Yingnan

Abstract

The traditional iron and steel industry (ISI) began to implement technological innovations aimed at lowering carbon footprint and emissions, resulting in hydrogen metallurgy gradually becoming a new trend of green development in ISI. However, there is a lack of comprehensive and in-depth analysis of energy-exergy based on the second law of thermodynamics in the current research of hydrogen metallurgy. To address these issues, a numerical calculation model of hydrogen metallurgy based on material-energy-exergy is established. Two novel evaluation indexes are introduced to better evaluate the impact of various parameters on hydrogen metallurgy. It was found that the exergy intensity is mainly affected by the amount of reducing gas, and increasing the preheating temperature of the ore cannot always reduce the exergy intensity due to the influence of element conservation. And when the ore preheating temperature is higher than 623 K, the exergy utilization efficiency decreases. After calculation, the lowest exergy intensity is 1.23 × 107 kJ/t-DRI when the H2 content is 41.37% and the ore temperature is 773 K. Furthermore, a simple process is designed to recover a substantial volume of unreacted gas from the furnace top gas. Overall, this study can serve as a reference for actual hydrogen metallurgy production.

Suggested Citation

  • Qiu, Ziyang & Du, Tao & Yue, Qiang & Na, Hongming & Sun, Jingchao & Yuan, Yuxing & Che, Zichang & Wang, Yisong & Li, Yingnan, 2023. "A multi-parameters evaluation on exergy for hydrogen metallurgy," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016730
    DOI: 10.1016/j.energy.2023.128279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223016730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xiong & Chen, Lingen & Qin, Xiaoyong & Sun, Fengrui, 2015. "Exergy loss minimization for a blast furnace with comparative analyses for energy flows and exergy flows," Energy, Elsevier, vol. 93(P1), pages 10-19.
    2. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    3. Hedin, Niklas & Andersson, Linnéa & Bergström, Lennart & Yan, Jinyue, 2013. "Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption," Applied Energy, Elsevier, vol. 104(C), pages 418-433.
    4. Kirschen, Marcus & Badr, Karim & Pfeifer, Herbert, 2011. "Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry," Energy, Elsevier, vol. 36(10), pages 6146-6155.
    5. Qian, Suxin & Yu, Jianlin & Yan, Gang, 2017. "A review of regenerative heat exchange methods for various cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 535-550.
    6. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    7. Shao, Lei & Zhang, Xiaonan & Zhao, Chenxi & Qu, Yingxia & Saxén, Henrik & Zou, Zongshu, 2021. "Computational analysis of hydrogen reduction of iron oxide pellets in a shaft furnace process," Renewable Energy, Elsevier, vol. 179(C), pages 1537-1547.
    8. Guanyong Sun & Bin Li & Wensheng Yang & Jing Guo & Hanjie Guo, 2020. "Analysis of Energy Consumption of the Reduction of Fe 2 O 3 by Hydrogen and Carbon Monoxide Mixtures," Energies, MDPI, vol. 13(8), pages 1-13, April.
    9. Li, Feng & Chu, Mansheng & Tang, Jue & Liu, Zhenggen & Guo, Jun & Yan, Ruijun & Liu, Peijun, 2022. "Thermodynamic performance analysis and environmental impact assessment of an integrated system for hydrogen generation and steelmaking," Energy, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Ziyang & Yue, Qiang & Yan, Tianyi & Wang, Qi & Sun, Jingchao & Yuan, Yuxing & Che, Zichang & Wang, Yisong & Du, Tao, 2023. "Gas utilization optimization and exergy analysis of hydrogen metallurgical shaft furnace," Energy, Elsevier, vol. 263(PC).
    2. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & Yuan, Yuxing & Du, Tao, 2022. "Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process," Energy, Elsevier, vol. 257(C).
    3. Yuan, Yuxing & Na, Hongming & Du, Tao & Qiu, Ziyang & Sun, Jingchao & Yan, Tianyi & Che, Zichang, 2023. "Multi-objective optimization and analysis of material and energy flows in a typical steel plant," Energy, Elsevier, vol. 263(PD).
    4. Tan, Jianming & Wang, Yao & Xu, Shijie & Liu, Huaican & Qian, Suxin, 2020. "Thermodynamic cycle analysis of heat driven elastocaloric cooling system," Energy, Elsevier, vol. 197(C).
    5. Zhang, Wei & Zhang, Juhua & Xue, Zhengliang, 2017. "Exergy analyses of the oxygen blast furnace with top gas recycling process," Energy, Elsevier, vol. 121(C), pages 135-146.
    6. Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
    7. Jie Yang & Shaowen Lu & Liangyong Wang, 2020. "Fused magnesia manufacturing process: a survey," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 327-350, February.
    8. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    9. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    10. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    11. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    12. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    13. Salvatore Digiesi & Giovanni Mummolo & Micaela Vitti, 2022. "Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model," Energies, MDPI, vol. 15(9), pages 1-21, May.
    14. Samet, Haidar & Ghanbari, Teymoor & Ghaisari, Jafar, 2014. "Maximizing the transferred power to electric arc furnace for having maximum production," Energy, Elsevier, vol. 72(C), pages 752-759.
    15. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    16. Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
    17. Chen, Zhengjie & Ma, Wenhui & Wu, Jijun & Wei, Kuixian & Yang, Xi & Lv, Guoqiang & Xie, Keqiang & Yu, Jie, 2016. "Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production," Energy, Elsevier, vol. 116(P1), pages 687-693.
    18. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
    19. Liu, Shuhan & Sun, Wenqiang, 2023. "Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation," Energy, Elsevier, vol. 262(PA).
    20. Haendel, Michael & Hirzel, Simon & Süß, Marlene, 2022. "Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen," Renewable Energy, Elsevier, vol. 190(C), pages 1100-1111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.