IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3324-d807741.html
   My bibliography  Save this article

Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model

Author

Listed:
  • Salvatore Digiesi

    (Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy)

  • Giovanni Mummolo

    (Ionic Department in Legal and Economic System of Mediterranean: Society, Environment, Culture, Università Degli Studi Di Bari Aldo Moro, 70121 Bari, Italy)

  • Micaela Vitti

    (Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy)

Abstract

The need to significantly reduce emissions from the steelmaking sector requires effective and ready-to-use technical solutions. With this aim, different decarbonization strategies have been investigated by both researchers and practitioners. To this concern, the most promising pathway is represented by the replacement of natural gas with pure hydrogen in the direct reduced iron (DRI) production process to feed an electric arc furnace (EAF). This solution allows to significantly reduce direct emissions of carbon dioxide from the DRI process but requires a significant amount of electricity to power electrolyzers adopted to produce hydrogen. The adoption of renewable electricity sources (green hydrogen) would reduce emissions by 95–100% compared to the blast furnace–basic oxygen furnace (BF–BOF) route. In this work, an analytical model for the identification of the minimum emission configuration of a green energy–steel system consisting of a secondary route supported by a DRI production process and a renewable energy conversion system is proposed. In the model, both technological features of the hydrogen steel plant and renewable energy production potential of the site where it is to be located are considered. Compared to previous studies, the novelty of this work consists of the joint modeling of a renewable energy system and a steel plant. This allows to optimize the overall system from an environmental point of view, considering the availability of green hydrogen as an inherent part of the model. Numerical experiments proved the effectiveness of the model proposed in evaluating the suitability of using green hydrogen in the steelmaking process. Depending on the characteristics of the site and the renewable energy conversion system adopted, decreases in emissions ranging from 60% to 91%, compared to the BF–BOF route, were observed for the green energy–steel system considered It was found that the environmental benefit of using hydrogen in the secondary route is strictly related to the national energy mix and to the electrolyzers’ technology. Depending on the reference context, it was found that there exists a maximum value of the emission factor from the national electricity grid below which is environmentally convenient to produce DRI by using only hydrogen. It was moreover found that the lower the electricity consumption of the electrolyzer, the higher the value assumed by the emission factor from the electricity grid, which makes the use of hydrogen convenient.

Suggested Citation

  • Salvatore Digiesi & Giovanni Mummolo & Micaela Vitti, 2022. "Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model," Energies, MDPI, vol. 15(9), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3324-:d:807741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Kewen & Bian, Huiyuan & Liu, Changwei & Zhang, Danfeng & Yang, Yanan, 2015. "Comparison of geothermal with solar and wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1464-1474.
    2. Abhinav Bhaskar & Mohsen Assadi & Homam Nikpey Somehsaraei, 2020. "Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen," Energies, MDPI, vol. 13(3), pages 1-23, February.
    3. Testa, Riccardo & Di Trapani, Anna Maria & Foderà, Mario & Sgroi, Filippo & Tudisca, Salvatore, 2014. "Economic evaluation of introduction of poplar as biomass crop in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 775-780.
    4. Nwachukwu, Chinedu Maureen & Wang, Chuan & Wetterlund, Elisabeth, 2021. "Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry – The case of Sweden," Applied Energy, Elsevier, vol. 288(C).
    5. Gul, Eid & Riva, Lorenzo & Nielsen, Henrik Kofoed & Yang, Haiping & Zhou, Hewen & Yang, Qing & Skreiberg, Øyvind & Wang, Liang & Barbanera, Marco & Zampilli, Mauro & Bartocci, Pietro & Fantozzi, Franc, 2021. "Substitution of coke with pelletized biocarbon in the European and Chinese steel industries: An LCA analysis," Applied Energy, Elsevier, vol. 304(C).
    6. Li, Feng & Chu, Mansheng & Tang, Jue & Liu, Zhenggen & Guo, Jun & Yan, Ruijun & Liu, Peijun, 2022. "Thermodynamic performance analysis and environmental impact assessment of an integrated system for hydrogen generation and steelmaking," Energy, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2023. "Electricity and Heat Demand in Steel Industry Technological Processes in Industry 4.0 Conditions," Energies, MDPI, vol. 16(2), pages 1-29, January.
    2. Justus Poschmann & Vanessa Bach & Matthias Finkbeiner, 2023. "Decarbonization Potentials for Automotive Supply Chains: Emission-Intensity Pathways of Carbon-Intensive Hotspots of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(15), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    2. Qiu, Ziyang & Sun, Jingchao & Du, Tao & Na, Hongming & Zhang, Lei & Yuan, Yuxing & Wang, Yisong, 2024. "Impact of hydrogen metallurgy on the current iron and steel industry: A comprehensive material-exergy-emission flow analysis," Applied Energy, Elsevier, vol. 356(C).
    3. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    4. Qiang Yue & Xicui Chai & Yujie Zhang & Qi Wang & Heming Wang & Feng Zhao & Wei Ji & Yuqi Lu, 2023. "Analysis of iron and steel production paths on the energy demand and carbon emission in China’s iron and steel industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4065-4085, May.
    5. Yanara Tranamil-Maripe & José M. Cardemil & Rodrigo Escobar & Diego Morata & Cristóbal Sarmiento-Laurel, 2022. "Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation," Energies, MDPI, vol. 15(6), pages 1-28, March.
    6. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    7. Krystyna Kurowska & Renata Marks-Bielska & Stanisław Bielski & Audrius Aleknavičius & Cezary Kowalczyk, 2020. "Geographic Information Systems and the Sustainable Development of Rural Areas," Land, MDPI, vol. 10(1), pages 1-18, December.
    8. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    9. Vonsée, Bram & Crijns-Graus, Wina & Liu, Wen, 2019. "Energy technology dependence - A value chain analysis of geothermal power in the EU," Energy, Elsevier, vol. 178(C), pages 419-435.
    10. Samy Yousef & Vidas Lekavičius & Nerijus Striūgas, 2023. "Techno-Economic Analysis of Thermochemical Conversion of Waste Masks Generated in the EU during COVID-19 Pandemic into Energy Products," Energies, MDPI, vol. 16(9), pages 1-14, May.
    11. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    12. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    13. Zhang, Lianjie & Tan, Yongdong & Cai, Dongqiang & Sun, Jifu & Zhang, Yue & Li, Longzhi & Zhang, Qiang & Zou, Guifu & Song, Zhanlong & Bai, Yonghui, 2022. "Enhanced pyrolysis of woody biomass under interaction of microwave and needle-shape metal and its production properties," Energy, Elsevier, vol. 249(C).
    14. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    15. Bin Xu, 2022. "How to Efficiently Reduce the Carbon Intensity of the Heavy Industry in China? Using Quantile Regression Approach," IJERPH, MDPI, vol. 19(19), pages 1-24, October.
    16. Huo, Dongxia & Bagadeem, Salim & Elsherazy, Tarek Abbas & Nasnodkar, Siddhesh Prabhu & Kalra, Akash, 2023. "Renewable energy consumption and the rising effect of climate policy uncertainty: Fresh policy analysis from China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1459-1474.
    17. Alessandro Cardarelli & Marco Barbanera, 2023. "Substitution of Fossil Coal with Hydrochar from Agricultural Waste in the Electric Arc Furnace Steel Industry: A Comprehensive Life Cycle Analysis," Energies, MDPI, vol. 16(15), pages 1-19, July.
    18. Zuo, Yinhui & Sun, Yigao & Zhang, Luquan & Zhang, Chao & Wang, Yingchun & Jiang, Guangzheng & Wang, Xiaoguang & Zhang, Tao & Cui, Longqing, 2024. "Geothermal resource evaluation in the Sichuan Basin and suggestions for the development and utilization of abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 225(C).
    19. Jenny Ibarguen & Rosaura Castrillón, 2024. "ISO 50002 and ITS Contribution to the Decarbonization of SMES: Case Study," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 224-244, January.
    20. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3324-:d:807741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.