IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p298-d472767.html
   My bibliography  Save this article

The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective

Author

Listed:
  • Michel Noussan

    (Fondazione Eni Enrico Mattei, Corso Magenta 63, 20123 Milano, Italy)

  • Pier Paolo Raimondi

    (Fondazione Eni Enrico Mattei, Corso Magenta 63, 20123 Milano, Italy)

  • Rossana Scita

    (Fondazione Eni Enrico Mattei, Corso Magenta 63, 20123 Milano, Italy)

  • Manfred Hafner

    (Fondazione Eni Enrico Mattei, Corso Magenta 63, 20123 Milano, Italy)

Abstract

Hydrogen is currently enjoying a renewed and widespread momentum in many national and international climate strategies. This review paper is focused on analysing the challenges and opportunities that are related to green and blue hydrogen, which are at the basis of different perspectives of a potential hydrogen society. While many governments and private companies are putting significant resources on the development of hydrogen technologies, there still remains a high number of unsolved issues, including technical challenges, economic and geopolitical implications. The hydrogen supply chain includes a large number of steps, resulting in additional energy losses, and while much focus is put on hydrogen generation costs, its transport and storage should not be neglected. A low-carbon hydrogen economy offers promising opportunities not only to fight climate change, but also to enhance energy security and develop local industries in many countries. However, to face the huge challenges of a transition towards a zero-carbon energy system, all available technologies should be allowed to contribute based on measurable indicators, which require a strong international consensus based on transparent standards and targets.

Suggested Citation

  • Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:298-:d:472767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lo Basso, Gianluigi & Nastasi, Benedetto & Astiaso Garcia, Davide & Cumo, Fabrizio, 2017. "How to handle the Hydrogen enriched Natural Gas blends in combustion efficiency measurement procedure of conventional and condensing boilers," Energy, Elsevier, vol. 123(C), pages 615-636.
    2. McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
    3. Ping, Zhang & Laijun, Wang & Songzhe, Chen & Jingming, Xu, 2018. "Progress of nuclear hydrogen production through the iodine–sulfur process in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1802-1812.
    4. Kafetzis, A. & Ziogou, C. & Panopoulos, K.D. & Papadopoulou, S. & Seferlis, P. & Voutetakis, S., 2020. "Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Kazuhiro Hikima & Masaharu Tsujimoto & Mizutomo Takeuchi & Yuya Kajikawa, 2020. "Transition Analysis of Budgetary Allocation for Projects on Hydrogen-Related Technologies in Japan," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    6. Marco Pellegrini & Alessandro Guzzini & Cesare Saccani, 2020. "A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network," Energies, MDPI, vol. 13(21), pages 1-22, October.
    7. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    8. Abhinav Bhaskar & Mohsen Assadi & Homam Nikpey Somehsaraei, 2020. "Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen," Energies, MDPI, vol. 13(3), pages 1-23, February.
    9. Baroutaji, Ahmad & Wilberforce, Tabbi & Ramadan, Mohamad & Olabi, Abdul Ghani, 2019. "Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 31-40.
    10. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    11. Kast, James & Morrison, Geoffrey & Gangloff, John J. & Vijayagopal, Ram & Marcinkoski, Jason, 2018. "Designing hydrogen fuel cell electric trucks in a diverse medium and heavy duty market," Research in Transportation Economics, Elsevier, vol. 70(C), pages 139-147.
    12. Aleksandar Lozanovski & Nicole Whitehouse & Nathanael Ko & Simon Whitehouse, 2018. "Sustainability Assessment of Fuel Cell Buses in Public Transport," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    13. Lorién Gracia & Pedro Casero & Cyril Bourasseau & Alexandre Chabert, 2018. "Use of Hydrogen in Off-Grid Locations, a Techno-Economic Assessment," Energies, MDPI, vol. 11(11), pages 1-16, November.
    14. Grüger, Fabian & Dylewski, Lucy & Robinius, Martin & Stolten, Detlef, 2018. "Carsharing with fuel cell vehicles: Sizing hydrogen refueling stations based on refueling behavior," Applied Energy, Elsevier, vol. 228(C), pages 1540-1549.
    15. Rossana Scita & Pier Paolo Raimondi & Michel Noussan, 2020. "Green Hydrogen: the Holy Grail of Decarbonisation? An Analysis of the Technical and Geopolitical Implications of the Future Hydrogen Economy," Working Papers 2020.13, Fondazione Eni Enrico Mattei.
    16. Sungmi Bae & Eunhan Lee & Jinil Han, 2020. "Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    17. d’Amore-Domenech, Rafael & Santiago, Óscar & Leo, Teresa J., 2020. "Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    19. Rabiee, Abbas & Keane, Andrew & Soroudi, Alireza, 2021. "Technical barriers for harnessing the green hydrogen: A power system perspective," Renewable Energy, Elsevier, vol. 163(C), pages 1580-1587.
    20. Scita, Rossana & Raimondi, Pier Paolo & Noussan, Michel, 2020. "Green Hydrogen: the Holy Grail of Decarbonisation? An Analysis of the Technical and Geopolitical Implications of the Future Hydrogen Economy," FEP: Future Energy Program 305824, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
    21. Ali Ekhtiari & Damian Flynn & Eoin Syron, 2020. "Investigation of the Multi-Point Injection of Green Hydrogen from Curtailed Renewable Power into a Gas Network," Energies, MDPI, vol. 13(22), pages 1-21, November.
    22. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    23. Anshuman Chaube & Andrew Chapman & Yosuke Shigetomi & Kathryn Huff & James Stubbins, 2020. "The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals," Energies, MDPI, vol. 13(17), pages 1-17, September.
    24. Lee, Dong-Yeon & Elgowainy, Amgad & Vijayagopal, Ram, 2019. "Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States," Energy Policy, Elsevier, vol. 128(C), pages 565-583.
    25. Cloete, Schalk & Ruhnau, Oliver & Hirth, Lion, 2020. "On capital utilization in the hydrogen economy: The quest to minimize idle capacity in renewables-rich energy systems," EconStor Preprints 222474, ZBW - Leibniz Information Centre for Economics.
    26. Mulholland, Eamonn & Teter, Jacob & Cazzola, Pierpaolo & McDonald, Zane & Ó Gallachóir, Brian P., 2018. "The long haul towards decarbonising road freight – A global assessment to 2050," Applied Energy, Elsevier, vol. 216(C), pages 678-693.
    27. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    28. Velazquez Abad, Anthony & Dodds, Paul E., 2020. "Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges," Energy Policy, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    2. Lei Yang & Shuning Wang & Zhihu Zhang & Kai Lin & Minggang Zheng, 2023. "Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    3. Moez Krichen & Yasir Basheer & Saeed Mian Qaisar & Asad Waqar, 2023. "A Survey on Energy Storage: Techniques and Challenges," Energies, MDPI, vol. 16(5), pages 1-29, February.
    4. Svetlana Revinova & Inna Lazanyuk & Svetlana Ratner & Konstantin Gomonov, 2023. "Forecasting Development of Green Hydrogen Production Technologies Using Component-Based Learning Curves," Energies, MDPI, vol. 16(11), pages 1-19, May.
    5. Kakran, Shubham & Sidhu, Arpit & Kumar, Ashish & Ben Youssef, Adel & Lohan, Sheenam, 2023. "Hydrogen energy in BRICS-US: A whirl succeeding fuel treasure," Applied Energy, Elsevier, vol. 334(C).
    6. Longden, Thomas & Beck, Fiona J. & Jotzo, Frank & Andrews, Richard & Prasad, Mousami, 2022. "‘Clean’ hydrogen? – Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen," Applied Energy, Elsevier, vol. 306(PB).
    7. Mustapha D. Ibrahim & Fatima A. S. Binofai & Maha O. A. Mohamad, 2022. "Transition to Low-Carbon Hydrogen Energy System in the UAE: Sector Efficiency and Hydrogen Energy Production Efficiency Analysis," Energies, MDPI, vol. 15(18), pages 1-19, September.
    8. Côté, Elizabeth & Salm, Sarah, 2022. "Risk-adjusted preferences of utility companies and institutional investors for battery storage and green hydrogen investment," Energy Policy, Elsevier, vol. 163(C).
    9. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    10. Razzaqul Ahshan, 2021. "Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    11. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    12. Jennifer Reeve & Oliver Grasham & Tariq Mahmud & Valerie Dupont, 2022. "Advanced Steam Reforming of Bio-Oil with Carbon Capture: A Techno-Economic and CO 2 Emissions Analysis," Clean Technol., MDPI, vol. 4(2), pages 1-20, April.
    13. Huaguang Yan & Wenda Zhang & Jiandong Kang & Tiejiang Yuan, 2023. "The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China," Energies, MDPI, vol. 16(13), pages 1-21, June.
    14. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    15. Andrzej Soboń & Daniel Słyś & Mariusz Ruszel & Alicja Wiącek, 2021. "Prospects for the Use of Hydrogen in the Armed Forces," Energies, MDPI, vol. 14(21), pages 1-12, October.
    16. Alessandro Franco & Caterina Giovannini, 2023. "Routes for Hydrogen Introduction in the Industrial Hard-to-Abate Sectors for Promoting Energy Transition," Energies, MDPI, vol. 16(16), pages 1-23, August.
    17. Lorenzo Bolfo & Francesco Devia & Guglielmo Lomonaco, 2021. "Nuclear Hydrogen Production: Modeling and Preliminary Optimization of a Helical Tube Heat Exchanger," Energies, MDPI, vol. 14(11), pages 1-24, May.
    18. Qureshy, Ali M.M.I. & Dincer, Ibrahim, 2021. "Multi-component modeling and simulation of a new photoelectrochemical reactor design for clean hydrogen production," Energy, Elsevier, vol. 224(C).
    19. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    20. Giuseppe Fabri & Antonio Ometto & Marco Villani & Gino D’Ovidio, 2022. "A Battery-Free Sustainable Powertrain Solution for Hydrogen Fuel Cell City Transit Bus Application," Sustainability, MDPI, vol. 14(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    2. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    3. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    5. Farah Mneimneh & Hasan Ghazzawi & Mohammad Abu Hejjeh & Matteo Manganelli & Seeram Ramakrishna, 2023. "Roadmap to Achieving Sustainable Development via Green Hydrogen," Energies, MDPI, vol. 16(3), pages 1-25, January.
    6. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    7. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Doyeon Lee & Keunhwan Kim, 2021. "Research and Development Investment and Collaboration Framework for the Hydrogen Economy in South Korea," Sustainability, MDPI, vol. 13(19), pages 1-28, September.
    9. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    10. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    11. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.
    12. Guo, Zhongjie & Wei, Wei & Chen, Laijun & Zhang, Xiaoping & Mei, Shengwei, 2021. "Equilibrium model of a regional hydrogen market with renewable energy based suppliers and transportation costs," Energy, Elsevier, vol. 220(C).
    13. Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Luciano De Tommasi & Pádraig Lyons, 2022. "Towards the Integration of Flexible Green Hydrogen Demand and Production in Ireland: Opportunities, Barriers, and Recommendations," Energies, MDPI, vol. 16(1), pages 1-32, December.
    15. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
    16. Dillman, K.J. & Heinonen, J., 2022. "A ‘just’ hydrogen economy: A normative energy justice assessment of the hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Wu, Yunna & Liu, Fangtong & He, Jiaming & Wu, Man & Ke, Yiming, 2021. "Obstacle identification, analysis and solutions of hydrogen fuel cell vehicles for application in China under the carbon neutrality target," Energy Policy, Elsevier, vol. 159(C).
    18. Wenting Cheng & Sora Lee, 2022. "How Green Are the National Hydrogen Strategies?," Sustainability, MDPI, vol. 14(3), pages 1-33, February.
    19. Azadnia, Amir Hossein & McDaid, Conor & Andwari, Amin Mahmoudzadeh & Hosseini, Seyed Ehsan, 2023. "Green hydrogen supply chain risk analysis: A european hard-to-abate sectors perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    20. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:298-:d:472767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.