IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v138y2020ics0301421520300586.html
   My bibliography  Save this article

Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges

Author

Listed:
  • Velazquez Abad, Anthony
  • Dodds, Paul E.

Abstract

Hydrogen can be produced from many different renewable and non-renewable feedstocks and technological pathways, with widely varying greenhouse gas emissions. For hydrogen to have a role in future low-carbon energy systems, it is necessary to demonstrate that it has sufficiently low carbon emissions. This paper explores how green hydrogen has been defined, reviews nascent green hydrogen characterisation initiatives, and highlights the main challenges that standards and guarantee of origin schemes must overcome to develop a market for green hydrogen.

Suggested Citation

  • Velazquez Abad, Anthony & Dodds, Paul E., 2020. "Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges," Energy Policy, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421520300586
    DOI: 10.1016/j.enpol.2020.111300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520300586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clark II, Woodrow W. & Rifkin, Jeremy, 2006. "A green hydrogen economy," Energy Policy, Elsevier, vol. 34(17), pages 2630-2639, November.
    2. Arthur P. J. Mol & Peter Oosterveer, 2015. "Certification of Markets, Markets of Certificates: Tracing Sustainability in Global Agro-Food Value Chains," Sustainability, MDPI, vol. 7(9), pages 1-21, September.
    3. Clark II, Woodrow W., 2008. "The green hydrogen paradigm shift: Energy generation for stations to vehicles," Utilities Policy, Elsevier, vol. 16(2), pages 117-129, June.
    4. Lazaroiu, Gheorghe & Pop, Elena & Negreanu, Gabriel & Pisa, Ionel & Mihaescu, Lucian & Bondrea, Andreya & Berbece, Viorel, 2017. "Biomass combustion with hydrogen injection for energy applications," Energy, Elsevier, vol. 127(C), pages 351-357.
    5. Poullikkas, Andreas, 2007. "Implementation of distributed generation technologies in isolated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 30-56, January.
    6. Clark, Woodrow W. & Rifkin, Jeremy & O'Connor, Todd & Swisher, Joel & Lipman, Tim & Rambach, Glen, 2005. "Hydrogen energy stations: along the roadside to the hydrogen economy," Utilities Policy, Elsevier, vol. 13(1), pages 41-50, March.
    7. Raimund Bleischwitz & Nicolas Bader, 2008. "The Policy Framework for the Promotion of Hydrogen and Fuel Cells in Europe: A Critical Assessment," Bruges European Economic Policy Briefings 19, European Economic Studies Department, College of Europe.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovacool, Benjamin K. & Brossmann, Brent, 2010. "Symbolic convergence and the hydrogen economy," Energy Policy, Elsevier, vol. 38(4), pages 1999-2012, April.
    2. Clark II, Woodrow W. & Isherwood, William, 2010. "Inner Mongolia must "leapfrog" the energy mistakes of the western developed nations," Utilities Policy, Elsevier, vol. 18(1), pages 29-45, March.
    3. Clark II, Woodrow W. & Li, Xing, 2010. ""Social capitalism" in renewable energy generation: China and California comparisons," Utilities Policy, Elsevier, vol. 18(1), pages 53-61, March.
    4. Nasiri, Masoud & Ramazani Khorshid-Doust, Reza & Bagheri Moghaddam, Nasser, 2013. "Effects of under-development and oil-dependency of countries on the formation of renewable energy technologies: A comparative study of hydrogen and fuel cell technology development in Iran and the Net," Energy Policy, Elsevier, vol. 63(C), pages 588-598.
    5. Åhman, Max & Nilsson, Lars J., 2008. "Path dependency and the future of advanced vehicles and biofuels," Utilities Policy, Elsevier, vol. 16(2), pages 80-89, June.
    6. Lund, Henrik & Clark II, Woodrow W., 2008. "Sustainable energy and transportation systems introduction and overview," Utilities Policy, Elsevier, vol. 16(2), pages 59-62, June.
    7. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    8. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    9. Benim, Ali Cemal & Pfeiffelmann, Björn & Ocłoń, Paweł & Taler, Jan, 2019. "Computational investigation of a lifted hydrogen flame with LES and FGM," Energy, Elsevier, vol. 173(C), pages 1172-1181.
    10. Cowan, Kelly R. & Daim, Tugrul U., 2011. "Review of technology acquisition and adoption research in the energy sector," Technology in Society, Elsevier, vol. 33(3), pages 183-199.
    11. Clark II, Woodrow W. & Rifkin, Jeremy, 2006. "A green hydrogen economy," Energy Policy, Elsevier, vol. 34(17), pages 2630-2639, November.
    12. Peter Andreasen, Kristian & Sovacool, Benjamin K., 2014. "Energy sustainability, stakeholder conflicts, and the future of hydrogen in Denmark," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 891-897.
    13. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    14. Caleb Gallemore & Kristjan Jespersen, 2019. "Offsetting, Insetting, or Both? Current Trends in Sustainable Palm Oil Certification," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    15. Xiongyong Zhou & Madeleine Pullman & Zhiduan Xu, 2022. "The impact of food supply chain traceability on sustainability performance," Operations Management Research, Springer, vol. 15(1), pages 93-115, June.
    16. Marzia Ingrassia & Stefania Chironi & Giuseppe Lo Grasso & Luciano Gristina & Nicola Francesca & Simona Bacarella & Pietro Columba & Luca Altamore, 2022. "Is Environmental Sustainability Also “Economically Efficient”? The Case of the “SOStain” Certification for Sicilian Sparkling Wines," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    17. Diaz-Rainey, Ivan & Tulloch, Daniel J. & Ahmed, Iftekhar & McCarten, Matthew & Taghizadeh-Hesary, Farhad, 2021. "An Energy Policy for ASEAN? Lessons from the EU Experience on Energy Integration, Security, and Decarbonization," ADBI Working Papers 1217, Asian Development Bank Institute.
    18. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    19. Poullikkas, Andreas, 2009. "Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region--A case study for the island of Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2474-2484, December.
    20. Poullikkas, Andreas & Kourtis, George & Hadjipaschalis, Ioannis, 2011. "A hybrid model for the optimum integration of renewable technologies in power generation systems," Energy Policy, Elsevier, vol. 39(2), pages 926-935, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421520300586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.