IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v101y2016icp161-173.html
   My bibliography  Save this article

Reducing CO2 emissions in China's manufacturing industry: Evidence from nonparametric additive regression models

Author

Listed:
  • Xu, Bin
  • Lin, Boqiang

Abstract

Identifying the drivers of carbon dioxide emissions in the manufacturing industry is vital for developing effective environmental policies. This study adopts provincial panel data from 2000 to 2013 and uses nonparametric additive regression models to analyze the drivers of CO2 emissions in the industry. The results show that the nonlinear effect of economic growth on CO2 emissions supports the Environmental Kuznets Curve (EKC) hypothesis. Energy structure has an inverted “U-shape” effect owing to massive coal consumption in the early stages and the optimization of energy structure in the later stage. The inverted “U-shaped” impact of industrialization may be due to the priority development of heavy industry in the early stages and the optimization of industrial structure in the later stages. The impact of urbanization also exhibits an inverted “U-shaped” pattern because of mass consumption of steel and cement products in the early stages and the advancement in clean energy technologies at the later stages. However, specific energy consumption has a positive “U-shaped” impact because of the difference in the speed of technological progress at different times. Thus, the differential effects of these indicators at different times should be taken into consideration when discussing reduction of CO2 emissions in China's manufacturing industry.

Suggested Citation

  • Xu, Bin & Lin, Boqiang, 2016. "Reducing CO2 emissions in China's manufacturing industry: Evidence from nonparametric additive regression models," Energy, Elsevier, vol. 101(C), pages 161-173.
  • Handle: RePEc:eee:energy:v:101:y:2016:i:c:p:161-173
    DOI: 10.1016/j.energy.2016.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216300494
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Ki-Hong & Oh, Wankeun, 2014. "Extended Divisia index decomposition of changes in energy intensity: A case of Korean manufacturing industry," Energy Policy, Elsevier, vol. 65(C), pages 275-283.
    2. Napp, T.A. & Gambhir, A. & Hills, T.P. & Florin, N. & Fennell, P.S, 2014. "A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 616-640.
    3. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2015. "Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution," Economic Modelling, Elsevier, vol. 44(C), pages 104-115.
    4. Ramli, Noor Asiah & Munisamy, Susila, 2015. "Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure," Economic Modelling, Elsevier, vol. 47(C), pages 219-227.
    5. Recalde, Marina & Ramos-Martin, Jesús, 2012. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," Energy, Elsevier, vol. 37(1), pages 122-132.
    6. Saboori, Behnaz & Sulaiman, Jamalludin, 2013. "Environmental degradation, economic growth and energy consumption: Evidence of the environmental Kuznets curve in Malaysia," Energy Policy, Elsevier, vol. 60(C), pages 892-905.
    7. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    8. You Wu & Jichuan Sheng & Fang Huang, 2015. "China’s future investments in environmental protection and control of manufacturing industry: lessons from developed countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1889-1901, July.
    9. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    10. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
    11. Li, Ke & Lin, Boqiang, 2015. "The efficiency improvement potential for coal, oil and electricity in China's manufacturing sectors," Energy, Elsevier, vol. 86(C), pages 403-413.
    12. Giuseppe Cavaliere & Peter C. B. Phillips & Stephan Smeekes & A. M. Robert Taylor, 2015. "Lag Length Selection for Unit Root Tests in the Presence of Nonstationary Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 512-536, April.
    13. Gelos, R. Gaston & Werner, Alejandro M., 2002. "Financial liberalization, credit constraints, and collateral: investment in the Mexican manufacturing sector," Journal of Development Economics, Elsevier, vol. 67(1), pages 1-27, February.
    14. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    15. Hasanbeigi, Ali & Price, Lynn & Fino-Chen, Cecilia & Lu, Hongyou & Ke, Jing, 2013. "Retrospective and prospective decomposition analysis of Chinese manufacturing energy use and policy implications," Energy Policy, Elsevier, vol. 63(C), pages 562-574.
    16. Liang, Sai & Zhang, Tianzhu, 2011. "What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province," Energy Policy, Elsevier, vol. 39(11), pages 7078-7083.
    17. Oh, Da-Young & Noguchi, Takafumi & Kitagaki, Ryoma & Park, Won-Jun, 2014. "CO2 emission reduction by reuse of building material waste in the Japanese cement industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 796-810.
    18. Wang, Yuan & Zhang, Xiang & Kubota, Jumpei & Zhu, Xiaodong & Lu, Genfa, 2015. "A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 704-709.
    19. Zhao, Yue & Ke, Jing & Ni, Chun Chun & McNeil, Michael & Khanna, Nina Zheng & Zhou, Nan & Fridley, David & Li, Qiqiang, 2014. "A comparative study of energy consumption and efficiency of Japanese and Chinese manufacturing industry," Energy Policy, Elsevier, vol. 70(C), pages 45-56.
    20. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    21. Gupta, Eshita, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A semi-parametric variable coefficient approach," Energy Economics, Elsevier, vol. 34(5), pages 1407-1421.
    22. Long, Xingle & Zhao, Xicang & Cheng, Faxin, 2015. "The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures," Energy Policy, Elsevier, vol. 81(C), pages 61-66.
    23. Bernard, Jean-Thomas & Cote, Bruno, 2005. "The measurement of the energy intensity of manufacturing industries: a principal components analysis," Energy Policy, Elsevier, vol. 33(2), pages 221-233, January.
    24. Lin, Boqiang & Wang, Xiaolei, 2014. "Promoting energy conservation in China's iron & steel sector," Energy, Elsevier, vol. 73(C), pages 465-474.
    25. Farla, Jacco C.M & Blok, Kornelis, 2000. "The use of physical indicators for the monitoring of energy intensity developments in the Netherlands, 1980–1995," Energy, Elsevier, vol. 25(7), pages 609-638.
    26. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    27. Granger, C. W. J., 1988. "Some recent development in a concept of causality," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 199-211.
    28. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.
    29. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    30. Sadath, Anver C. & Acharya, Rajesh H., 2015. "Effects of energy price rise on investment: Firm level evidence from Indian manufacturing sector," Energy Economics, Elsevier, vol. 49(C), pages 516-522.
    31. McKay Curtis, S. & Banerjee, Sayantan & Ghosal, Subhashis, 2014. "Fast Bayesian model assessment for nonparametric additive regression," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 347-358.
    32. Stephen MacDonald & Suwen Pan & Darren Hudson & Francis Tuan, 2013. "Chinese domestic textile demand: where they buy does matter," China Agricultural Economic Review, Emerald Group Publishing, vol. 5(3), pages 312-327, August.
    33. Eshita Gupta, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A Semi-parametric variable coefficient approach," Indian Statistical Institute, Planning Unit, New Delhi Discussion Papers 12-02, Indian Statistical Institute, New Delhi, India.
    34. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahbaz, Muhammad & Sinha, Avik, 2018. "Environmental Kuznets Curve for CO2 Emission: A Literature Survey," MPRA Paper 86281, University Library of Munich, Germany, revised 11 Apr 2018.
    2. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
    3. Wang, Yuan & Zhang, Chen & Lu, Aitong & Li, Li & He, Yanmin & ToJo, Junji & Zhu, Xiaodong, 2017. "A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China," Applied Energy, Elsevier, vol. 190(C), pages 172-180.
    4. repec:eee:eneeco:v:70:y:2018:i:c:p:116-131 is not listed on IDEAS
    5. Ahmad, Najid & Du, Liangsheng & Lu, Jiye & Wang, Jianlin & Li, Hong-Zhou & Hashmi, Muhammad Zaffar, 2017. "Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve?," Energy, Elsevier, vol. 123(C), pages 164-172.
    6. repec:eee:eneeco:v:64:y:2017:i:c:p:31-44 is not listed on IDEAS
    7. repec:eee:appene:v:206:y:2017:i:c:p:1544-1551 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:101:y:2016:i:c:p:161-173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.