IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v34y2012i5p1407-1421.html
   My bibliography  Save this article

Global warming and electricity demand in the rapidly growing city of Delhi: A semi-parametric variable coefficient approach

Author

Listed:
  • Gupta, Eshita

Abstract

This paper estimates the climate sensitivity of electricity demand in Delhi using daily data on electricity demand and apparent temperature for the period 2000–09. The study adopts a semi-parametric variable coefficient model in order to investigate the impact of climatic factors on electricity demand. As evident from previous studies, electricity demand is a U-shaped function of temperature. We find the rising part of the temperature–electricity curve to become more pronounced over time implying an increase in cooling demand per unit increase in summer temperatures. The study therefore predicts the adverse effects of climate change on electricity demand to be asymmetrically distributed in different seasons in the future, resulting in a serious disequilibrium in the hot months.

Suggested Citation

  • Gupta, Eshita, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A semi-parametric variable coefficient approach," Energy Economics, Elsevier, vol. 34(5), pages 1407-1421.
  • Handle: RePEc:eee:eneeco:v:34:y:2012:i:5:p:1407-1421
    DOI: 10.1016/j.eneco.2012.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988312001016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2012.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wadud, Zia & Noland, Robert B. & Graham, Daniel J., 2010. "A semiparametric model of household gasoline demand," Energy Economics, Elsevier, vol. 32(1), pages 93-101, January.
    2. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    3. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    4. Ramesh, S. & Natarajan, Bhaskar & Bhagat, Gopika, 1988. "Peak load prediction using weather variables," Energy, Elsevier, vol. 13(8), pages 671-679.
    5. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    6. repec:dau:papers:123456789/8180 is not listed on IDEAS
    7. Moral-Carcedo, Julian & Vicens-Otero, Jose, 2005. "Modelling the non-linear response of Spanish electricity demand to temperature variations," Energy Economics, Elsevier, vol. 27(3), pages 477-494, May.
    8. Yatchew,Adonis, 2003. "Semiparametric Regression for the Applied Econometrician," Cambridge Books, Cambridge University Press, number 9780521812832, August.
    9. Sailor, D.J & Pavlova, A.A, 2003. "Air conditioning market saturation and long-term response of residential cooling energy demand to climate change," Energy, Elsevier, vol. 28(9), pages 941-951.
    10. Sailor, David J, 2001. "Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities," Energy, Elsevier, vol. 26(7), pages 645-657.
    11. Hekkenberg, M. & Moll, H.C. & Uiterkamp, A.J.M. Schoot, 2009. "Dynamic temperature dependence patterns in future energy demand models in the context of climate change," Energy, Elsevier, vol. 34(11), pages 1797-1806.
    12. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355.
    13. Henley, Andrew & Peirson, John, 1997. "Non-linearities in Electricity Demand and Temperature: Parametric versus Non-parametric Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 149-162, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yaoping & Bielicki, Jeffrey M., 2018. "Acclimation and the response of hourly electricity loads to meteorological variables," Energy, Elsevier, vol. 142(C), pages 473-485.
    2. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    3. Falchetta, Giacomo & Mistry, Malcolm N., 2021. "The role of residential air circulation and cooling demand for electrification planning: Implications of climate change in sub-Saharan Africa," Energy Economics, Elsevier, vol. 99(C).
    4. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    5. Du, Kerui & Yu, Ying & Wei, Chu, 2020. "Climatic impact on China's residential electricity consumption: Does the income level matter?," China Economic Review, Elsevier, vol. 63(C).
    6. Marilyn A. Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    7. Eshita Gupta, 2014. "The Effect of development on the climate sensitivity of electricity demand in India," Discussion Papers 14-05, Indian Statistical Institute, Delhi.
    8. Brandon Moore & André Coleman & Mark Wigmosta & Richard Skaggs & Erik Venteris, 2015. "A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5185-5200, November.
    9. Ang, B.W. & Wang, H. & Ma, Xiaojing, 2017. "Climatic influence on electricity consumption: The case of Singapore and Hong Kong," Energy, Elsevier, vol. 127(C), pages 534-543.
    10. Eshita Gupta, 2016. "The Effect Of Development On The Climate Sensitivity Of Electricity Demand In India," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-49, May.
    11. Hao, Xiaoli & Deng, Feng, 2019. "The marginal and double threshold effects of regional innovation on energy consumption structure: Evidence from resource-based regions in China," Energy Policy, Elsevier, vol. 131(C), pages 144-154.
    12. Byrne, Paul & Fournaison, Laurence & Delahaye, Anthony & Ait Oumeziane, Yacine & Serres, Laurent & Loulergue, Patrick & Szymczyk, Anthony & Mugnier, Daniel & Malaval, Jean-Luc & Bourdais, Romain & Gue, 2015. "A review on the coupling of cooling, desalination and solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 703-717.
    13. Xu, Bin & Lin, Boqiang, 2016. "Reducing CO2 emissions in China's manufacturing industry: Evidence from nonparametric additive regression models," Energy, Elsevier, vol. 101(C), pages 161-173.
    14. Eshita Gupta, 2014. "The Effect of development on the climate sensitivity of electricity demand in India," Indian Statistical Institute, Planning Unit, New Delhi Discussion Papers 14-05, Indian Statistical Institute, New Delhi, India.
    15. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
    16. Marilyn Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    17. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    2. Hekkenberg, M. & Benders, R.M.J. & Moll, H.C. & Schoot Uiterkamp, A.J.M., 2009. "Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands," Energy Policy, Elsevier, vol. 37(4), pages 1542-1551, April.
    3. Hekkenberg, M. & Moll, H.C. & Uiterkamp, A.J.M. Schoot, 2009. "Dynamic temperature dependence patterns in future energy demand models in the context of climate change," Energy, Elsevier, vol. 34(11), pages 1797-1806.
    4. Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
    5. Ozhegov, Evgeniy & Popova, Evgeniya, 2017. "Demand for electricity and weather conditions: Nonparametric analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 46, pages 55-73.
    6. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    7. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
    8. Marilyn Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    9. Marilyn A. Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    10. Blazquez Leticia & Nina Boogen & Massimo Filippini, 2012. "Residential electricity demand for Spain: new empirical evidence using aggregated data," CEPE Working paper series 12-82, CEPE Center for Energy Policy and Economics, ETH Zurich.
    11. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    12. Salisu, Afees A. & Ayinde, Taofeek O., 2016. "Modeling energy demand: Some emerging issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1470-1480.
    13. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016. "A new approach to modeling the effects of temperature fluctuations on monthly electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 206-216.
    14. Reza Fazeli & Brynhildur Davidsdottir & Jonas Hlynur Hallgrimsson, 2016. "Climate Impact On Energy Demand For Space Heating In Iceland," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-23, May.
    15. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    16. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    17. Moral-Carcedo, Julián & Pérez-García, Julián, 2015. "Temperature effects on firms’ electricity demand: An analysis of sectorial differences in Spain," Applied Energy, Elsevier, vol. 142(C), pages 407-425.
    18. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
    19. Palacios-Garcia, E.J. & Moreno-Munoz, A. & Santiago, I. & Flores-Arias, J.M. & Bellido-Outeirino, F.J. & Moreno-Garcia, I.M., 2018. "A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector," Energy, Elsevier, vol. 144(C), pages 1080-1091.
    20. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.

    More about this item

    Keywords

    Temperature–electricity curve; Variable coefficient model;

    JEL classification:

    • A10 - General Economics and Teaching - - General Economics - - - General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:5:p:1407-1421. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.