IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i4p1403-1423.html
   My bibliography  Save this article

A Review of Methods for Long‐Term Electric Load Forecasting

Author

Listed:
  • Thangjam Aditya
  • Sanjita Jaipuria
  • Pradeep Kumar Dadabada

Abstract

Long‐term load forecasting (LTLF) has been a fundamental least‐cost planning tool for electric utilities. In the past, utilities were monopolies and paid less attention to uncertainty in their LTLF methodologies. Nowadays, such casualness is pricey in competitive markets because utilities need to examine the financial implications of forecast uncertainty for survival. Hence, the aim of this paper is to critique the LTLF research trends with a focus on uncertainty quantification (UQ). For this purpose, we examined 40 LTLF articles published between January 2003 and February 2021. We found that UQ is a nascent area of LTLF research. Our review found two approaches to UQ in LTLF: probabilistic scenario analysis and direct probabilistic methods. The former approach is more helpful to risk analysts but has major caveats in addressing interdependencies of socioeconomic and climate scenarios. We identified very little LTLF research that examines uncertainties associated with climate extremes, distributed generation resources, and demand‐side management. Lastly, there is enormous potential for mitigating financial risks by embracing asymmetric cost functions in LTLF research. Future LTLF researchers can work on these identified gaps to help utilities in risk estimation, cost‐reliability balancing, and estimation of reserve margin under climate change.

Suggested Citation

  • Thangjam Aditya & Sanjita Jaipuria & Pradeep Kumar Dadabada, 2025. "A Review of Methods for Long‐Term Electric Load Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(4), pages 1403-1423, July.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:4:p:1403-1423
    DOI: 10.1002/for.3248
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3248
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Angelopoulos, Dimitrios & Siskos, Yannis & Psarras, John, 2019. "Disaggregating time series on multiple criteria for robust forecasting: The case of long-term electricity demand in Greece," European Journal of Operational Research, Elsevier, vol. 275(1), pages 252-265.
    2. Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
    3. Kazemzadeh, Mohammad-Rasool & Amjadian, Ali & Amraee, Turaj, 2020. "A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting," Energy, Elsevier, vol. 204(C).
    4. Snyder, Hannah, 2019. "Literature review as a research methodology: An overview and guidelines," Journal of Business Research, Elsevier, vol. 104(C), pages 333-339.
    5. Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
    6. Gerossier, Alexis & Barbier, Thibaut & Girard, Robin, 2017. "A novel method for decomposing electricity feeder load into elementary profiles from customer information," Applied Energy, Elsevier, vol. 203(C), pages 752-760.
    7. Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
    8. Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
    9. Carvallo, Juan Pablo & Larsen, Peter H. & Sanstad, Alan H. & Goldman, Charles A., 2018. "Long term load forecasting accuracy in electric utility integrated resource planning," Energy Policy, Elsevier, vol. 119(C), pages 410-422.
    10. F. Chui & A. Elkamel & R. Surit & E. Croiset & P.L. Douglas, 2009. "Long-term electricity demand forecasting for power system planning using economic, demographic and climatic variables," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 3(3), pages 277-304.
    11. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    12. Bunn, Derek W. & Salo, Ahti A., 1993. "Forecasting with scenarios," European Journal of Operational Research, Elsevier, vol. 68(3), pages 291-303, August.
    13. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    14. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric D. & Reyna, Janet, 2019. "Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change," Applied Energy, Elsevier, vol. 236(C), pages 1-9.
    15. Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
    16. Pao, Hsiao-Tien, 2009. "Forecast of electricity consumption and economic growth in Taiwan by state space modeling," Energy, Elsevier, vol. 34(11), pages 1779-1791.
    17. Mukherjee, Sayanti & Vineeth, C.R. & Nateghi, Roshanak, 2019. "Evaluating regional climate-electricity demand nexus: A composite Bayesian predictive framework," Applied Energy, Elsevier, vol. 235(C), pages 1561-1582.
    18. Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2021. "Hierarchical Probabilistic Forecasting of Electricity Demand With Smart Meter Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 27-43, March.
    19. Kaytez, Fazil, 2020. "A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption," Energy, Elsevier, vol. 197(C).
    20. Trotter, Ian M. & Bolkesjø, Torjus Folsland & Féres, José Gustavo & Hollanda, Lavinia, 2016. "Climate change and electricity demand in Brazil: A stochastic approach," Energy, Elsevier, vol. 102(C), pages 596-604.
    21. Lindberg, K.B. & Seljom, P. & Madsen, H. & Fischer, D. & Korpås, M., 2019. "Long-term electricity load forecasting: Current and future trends," Utilities Policy, Elsevier, vol. 58(C), pages 102-119.
    22. Burillo, Daniel & Chester, Mikhail V. & Ruddell, Benjamin & Johnson, Nathan, 2017. "Electricity demand planning forecasts should consider climate non-stationarity to maintain reserve margins during heat waves," Applied Energy, Elsevier, vol. 206(C), pages 267-277.
    23. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    24. Jiang, Weiheng & Wu, Xiaogang & Gong, Yi & Yu, Wanxin & Zhong, Xinhui, 2020. "Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption," Energy, Elsevier, vol. 193(C).
    25. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    26. Eshita Gupta, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A Semi-parametric variable coefficient approach," Discussion Papers 12-02, Indian Statistical Institute, Delhi.
    27. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    28. Davut Solyali, 2020. "A Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus," Sustainability, MDPI, vol. 12(9), pages 1-34, April.
    29. Behm, Christian & Nolting, Lars & Praktiknjo, Aaron, 2020. "How to model European electricity load profiles using artificial neural networks," Applied Energy, Elsevier, vol. 277(C).
    30. Tang, Lei & Wang, Xifan & Wang, Xiuli & Shao, Chengcheng & Liu, Shiyu & Tian, Shijun, 2019. "Long-term electricity consumption forecasting based on expert prediction and fuzzy Bayesian theory," Energy, Elsevier, vol. 167(C), pages 1144-1154.
    31. Gupta, Eshita, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A semi-parametric variable coefficient approach," Energy Economics, Elsevier, vol. 34(5), pages 1407-1421.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thangjam, Aditya & Jaipuria, Sanjita & Dadabada, Pradeep Kumar, 2023. "Time-Varying approaches for Long-Term Electric Load Forecasting under economic shocks," Applied Energy, Elsevier, vol. 333(C).
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    4. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
    5. Mustafa Saglam & Catalina Spataru & Omer Ali Karaman, 2023. "Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms," Energies, MDPI, vol. 16(11), pages 1-23, June.
    6. Sen, Doruk & Tunç, K.M. Murat & Günay, M. Erdem, 2021. "Forecasting electricity consumption of OECD countries: A global machine learning modeling approach," Utilities Policy, Elsevier, vol. 70(C).
    7. Kamal Chapagain & Somsak Kittipiyakul, 2018. "Performance Analysis of Short-Term Electricity Demand with Atmospheric Variables," Energies, MDPI, vol. 11(4), pages 1-34, April.
    8. Marco Repetto & Cinzia Colapinto & Muhammad Usman Tariq, 2025. "Artificial intelligence driven demand forecasting: an application to the electricity market," Annals of Operations Research, Springer, vol. 346(2), pages 1637-1651, March.
    9. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    10. Mustafa Saglam & Catalina Spataru & Omer Ali Karaman, 2022. "Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island," Energies, MDPI, vol. 15(16), pages 1-22, August.
    11. Kazemzadeh, Mohammad-Rasool & Amjadian, Ali & Amraee, Turaj, 2020. "A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting," Energy, Elsevier, vol. 204(C).
    12. Li, Jinghua & Luo, Yichen & Wei, Shanyang, 2022. "Long-term electricity consumption forecasting method based on system dynamics under the carbon-neutral target," Energy, Elsevier, vol. 244(PA).
    13. Alejandra Martínez-Martínez & Rafael Llorca-Vivero, 2025. "The Taxonomy of Climate Change: How Rising Temperatures Unequally Impact Nations’ Discomfort," Working Papers 2507, Department of Applied Economics II, Universidad de Valencia.
    14. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    15. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    16. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    17. Leonard Burg & Gonca Gürses-Tran & Reinhard Madlener & Antonello Monti, 2021. "Comparative Analysis of Load Forecasting Models for Varying Time Horizons and Load Aggregation Levels," Energies, MDPI, vol. 14(21), pages 1-16, November.
    18. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    19. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    20. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:4:p:1403-1423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.