IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina

  • Marina Recalde

    (Departamento de Economía, Universidad Nacional del Sur and GEPAMA-UBA, Buenos Aires, Argentina)

  • Jesus Ramos-Martin

    (Departament d’Economia i d’Història Econòmica, Universitat Autònoma de Barcelona, Spain)

The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 1990-2007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.h-economica.uab.es/wps/2011_03.pdf
File Function: Full text
Download Restriction: no

Paper provided by Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica in its series UHE Working papers with number 2011_03.

as
in new window

Length: 23 pages
Date of creation: Jan 2011
Date of revision:
Handle: RePEc:aub:uhewps:2011_03
Contact details of provider: Postal:
Edifici B, Campus UAB, 08193, Bellaterra, Barcelona, Spain

Phone: +34 935811203
Fax: +34 935812012
Web page: http://www.h-economica.uab.es

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. John Gowdy & Mario Giampietro & Jesus Ramos-Martin & Kozo Mayumi, 2009. "Incorporating Biophysical Foundations in a Hierarchical Model of Societal Metabolism," Chapters, in: Post Keynesian and Ecological Economics, chapter 10 Edward Elgar Publishing.
  2. Kaufmann, Robert K., 1992. "A biophysical analysis of the energy/real GDP ratio: implications for substitution and technical change," Ecological Economics, Elsevier, vol. 6(1), pages 35-56, July.
  3. Oh, Wankeun & Lee, Kihoon, 2004. "Causal relationship between energy consumption and GDP revisited: the case of Korea 1970-1999," Energy Economics, Elsevier, vol. 26(1), pages 51-59, January.
  4. Herring, Horace, 2006. "Energy efficiency—a critical view," Energy, Elsevier, vol. 31(1), pages 10-20.
  5. van Zon, Adriaan & Yetkiner, I. Hakan, 2003. "An endogenous growth model with embodied energy-saving technical change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 81-103, February.
  6. Shafik, Nemat & Bandyopadhyay, Sushenjit, 1992. "Economic growth and environmental quality : time series and cross-country evidence," Policy Research Working Paper Series 904, The World Bank.
  7. Asafu-Adjaye, John, 2000. "The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries," Energy Economics, Elsevier, vol. 22(6), pages 615-625, December.
  8. Narayan, Paresh Kumar & Smyth, Russell, 2009. "Multivariate granger causality between electricity consumption, exports and GDP: Evidence from a panel of Middle Eastern countries," Energy Policy, Elsevier, vol. 37(1), pages 229-236, January.
  9. Warr, B.S. & Ayres, R.U., 2010. "Evidence of causality between the quantity and quality of energy consumption and economic growth," Energy, Elsevier, vol. 35(4), pages 1688-1693.
  10. Reister, David B., 1987. "The link between energy and GDP in developing countries," Energy, Elsevier, vol. 12(6), pages 427-433.
  11. Nina Eisenmenger & Jesús Ramos Martín & Heinz Schandl, 2007. "Análisis del metabolismo energético y de materiales de Brasil, Chile y Venezuela," Revista Iberoamericana de Economía Ecológica, Red Iberoamericana de Economía Ecológica, vol. 6, pages 17-39.
  12. Apergis, Nicholas & Payne, James E., 2009. "Energy consumption and economic growth: Evidence from the Commonwealth of Independent States," Energy Economics, Elsevier, vol. 31(5), pages 641-647, September.
  13. Amy K. Richmond & Robert K. Kaufmann, 2006. "Energy Prices and Turning Points: The Relationship between Income and Energy Use/Carbon Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 157-180.
  14. Unruh, G. C. & Moomaw, W. R., 1998. "An alternative analysis of apparent EKC-type transitions," Ecological Economics, Elsevier, vol. 25(2), pages 221-229, May.
  15. Recalde, Marina, 2011. "Energy policy and energy market performance: The Argentinean case," Energy Policy, Elsevier, vol. 39(6), pages 3860-3868, June.
  16. Goldemberg, José & Siqueira Prado, Luiz Tadêo, 2011. "The decline of the world's energy intensity," Energy Policy, Elsevier, vol. 39(3), pages 1802-1805, March.
  17. William Harbaugh & Arik Levinson & David Wilson, 2000. "Reexamining the Empirical Evidence for an Environmental Kuznets Curve," Working Papers gueconwpa~00-00-07, Georgetown University, Department of Economics.
  18. Zuazagoitia, J. & Perelló-Aracena, F. & Haasis, H.-D. & Rentz, O., 1991. "An energy-GDP-population analysis for Latin-American countries," Energy, Elsevier, vol. 16(6), pages 923-931.
  19. Michael T. Toman & Barbora Jemelkova, 2003. "Energy and Economic Development: An Assessment of the State of Knowledge," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 93-112.
  20. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
  21. Azomahou, Theophile & Laisney, Francois & Nguyen Van, Phu, 2006. "Economic development and CO2 emissions: A nonparametric panel approach," Journal of Public Economics, Elsevier, vol. 90(6-7), pages 1347-1363, August.
  22. Schafer, Andreas, 2005. "Structural change in energy use," Energy Policy, Elsevier, vol. 33(4), pages 429-437, March.
  23. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
  24. Zachariadis, Theodoros, 2007. "Exploring the relationship between energy use and economic growth with bivariate models: New evidence from G-7 countries," Energy Economics, Elsevier, vol. 29(6), pages 1233-1253, November.
  25. Alcantara, Vicent & Duro, Juan Antonio, 2004. "Inequality of energy intensities across OECD countries: a note," Energy Policy, Elsevier, vol. 32(11), pages 1257-1260, July.
  26. Lean, Hooi Hooi & Smyth, Russell, 2010. "Multivariate Granger causality between electricity generation, exports, prices and GDP in Malaysia," Energy, Elsevier, vol. 35(9), pages 3640-3648.
  27. Isamu Matsukawa & Yoshifumi Fujii & Seishi Madono, 1993. "Price, Environmental Regulation, and Fuel Demand: Econometric Estimates for Japanese Manufacturing Industries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 37-56.
  28. Mendiluce, María & Pérez-Arriaga, Ignacio & Ocaña, Carlos, 2010. "Comparison of the evolution of energy intensity in Spain and in the EU15. Why is Spain different?," Energy Policy, Elsevier, vol. 38(1), pages 639-645, January.
  29. Ramos-Martín, Jesús & Cañellas-Boltà, Sílvia & Giampietro, Mario & Gamboa, Gonzalo, 2009. "Catalonia's energy metabolism: Using the MuSIASEM approach at different scales," Energy Policy, Elsevier, vol. 37(11), pages 4658-4671, November.
  30. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "The impact of energy consumption on economic growth: Evidence from linear and nonlinear models in Taiwan," Energy, Elsevier, vol. 32(12), pages 2282-2294.
  31. Giampietro, Mario & Mayumi, Kozo & Ramos-Martin, Jesus, 2009. "Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale," Energy, Elsevier, vol. 34(3), pages 313-322.
  32. Luzzati, T. & Orsini, M., 2009. "Investigating the energy-environmental Kuznets curve," Energy, Elsevier, vol. 34(3), pages 291-300.
  33. Francis, Brian M. & Moseley, Leo & Iyare, Sunday Osaretin, 2007. "Energy consumption and projected growth in selected Caribbean countries," Energy Economics, Elsevier, vol. 29(6), pages 1224-1232, November.
  34. Lee, Chien-Chiang, 2005. "Energy consumption and GDP in developing countries: A cointegrated panel analysis," Energy Economics, Elsevier, vol. 27(3), pages 415-427, May.
  35. Haselip, James & Potter, Clive, 2010. "Post-neoliberal electricity market 're-reforms' in Argentina: Diverging from market prescriptions?," Energy Policy, Elsevier, vol. 38(2), pages 1168-1176, February.
  36. Ramos-Martin, Jesus & Giampietro, Mario & Mayumi, Kozo, 2007. "On China's exosomatic energy metabolism: An application of multi-scale integrated analysis of societal metabolism (MSIASM)," Ecological Economics, Elsevier, vol. 63(1), pages 174-191, June.
  37. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
  38. Marina Halac & Sergio Schmukler, 2003. "Distributional effects of crises : the role of financial transfers," Policy Research Working Paper Series 3173, The World Bank.
  39. Acaravci, Ali & Ozturk, Ilhan, 2010. "On the relationship between energy consumption, CO2 emissions and economic growth in Europe," Energy, Elsevier, vol. 35(12), pages 5412-5420.
  40. Giampietro, Mario & Mayumi, Kozo, 1997. "A dynamic model of socioeconomic systems based on hierarchy theory and its application to sustainability," Structural Change and Economic Dynamics, Elsevier, vol. 8(4), pages 453-469, October.
  41. Duro, Juan Antonio & Padilla, Emilio, 2011. "Inequality across countries in energy intensities: An analysis of the role of energy transformation and final energy consumption," Energy Economics, Elsevier, vol. 33(3), pages 474-479, May.
  42. Jalil, Abdul & Mahmud, Syed F., 2009. "Environment Kuznets curve for CO2 emissions: A cointegration analysis for China," Energy Policy, Elsevier, vol. 37(12), pages 5167-5172, December.
  43. Ravallion, Martin & Heil, Mark & Jalan, Jyotsna, 2000. "Carbon Emissions and Income Inequality," Oxford Economic Papers, Oxford University Press, vol. 52(4), pages 651-69, October.
  44. Duro, Juan Antonio & Alcántara, Vicent & Padilla, Emilio, 2010. "International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries," Ecological Economics, Elsevier, vol. 69(12), pages 2468-2474, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aub:uhewps:2011_03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jesus Ramos-Martin)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.