IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544225000325.html
   My bibliography  Save this article

Effect of applying full oxygen blast furnace on the transformation of energy mix and reduction of CO2 emissions for an integral steel plant

Author

Listed:
  • Li, Xinjian
  • Tian, Weijian
  • Li, Hui
  • Quan, Kui
  • Zhang, Xu
  • Lu, Xin
  • Bai, Hao

Abstract

This study introduces the full oxygen blast furnace (FOBF) as an alternative to the traditional blast furnace (TBF) process, aiming to achieve substantial reductions in CO2 emissions. A thermodynamic model was developed to calculate the theoretical minimum carbon consumption (TMCC) for FOBF, enabling further analysis. Three integrated steel production systems, each incorporating one to three FOBFs, were designed based on operational data from an integrated steel plant (ISP) currently utilizing three TBFs. Comparative assessments of energy consumption and CO2 emissions across these systems were conducted. Results indicate that while replacing TBF with FOBF effectively reduces energy consumption, shifts in the ISP's energy mix yield a more pronounced impact on CO2 emissions. Specifically, when all TBFs in the ISP are replaced by FOBFs, total energy consumption decreases by 8.0 %, while the proportion of clean coal decreases by 27.2 %, leading to a 59.3 % reduction in CO2 emissions. The study further explores potential indirect CO2 emissions reductions from ISPs, considering future expansions in renewable and nuclear energy applications. Finally, the influence of CO/CO2 separation capacity in the pressure swing adsorption (PSA) system on FOBF operations are examined.

Suggested Citation

  • Li, Xinjian & Tian, Weijian & Li, Hui & Quan, Kui & Zhang, Xu & Lu, Xin & Bai, Hao, 2025. "Effect of applying full oxygen blast furnace on the transformation of energy mix and reduction of CO2 emissions for an integral steel plant," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000325
    DOI: 10.1016/j.energy.2025.134390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xiong & Chen, Lingen & Feng, Huijun & Qin, Xiaoyong & Sun, Fengrui, 2016. "Constructal design of a blast furnace iron-making process based on multi-objective optimization," Energy, Elsevier, vol. 109(C), pages 137-151.
    2. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Chao, Cong & Deng, Yimin & Dewil, Raf & Baeyens, Jan & Fan, Xianfeng, 2021. "Post-combustion carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Yuan, Yuxing & Na, Hongming & Du, Tao & Qiu, Ziyang & Sun, Jingchao & Yan, Tianyi & Che, Zichang, 2023. "Multi-objective optimization and analysis of material and energy flows in a typical steel plant," Energy, Elsevier, vol. 263(PD).
    5. Liu, Lianzhi & Jiang, Zeyi & Zhang, Xinru & Lu, Yuanxiang & He, Junkai & Wang, Jingsong & Zhang, Xinxin, 2018. "Effects of top gas recycling on in-furnace status, productivity, and energy consumption of oxygen blast furnace," Energy, Elsevier, vol. 163(C), pages 144-150.
    6. Abdul Quader, M. & Ahmed, Shamsuddin & Dawal, S.Z. & Nukman, Y., 2016. "Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 537-549.
    7. Zhang, Wei & Zhang, Juhua & Xue, Zhengliang, 2017. "Exergy analyses of the oxygen blast furnace with top gas recycling process," Energy, Elsevier, vol. 121(C), pages 135-146.
    8. Jin, Peng & Jiang, Zeyi & Bao, Cheng & Hao, Shiyu & Zhang, Xinxin, 2017. "The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 58-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Tingting & Huo, Zhaoyi & Wang, Wenjing & Xie, Ning & Li, Lili & Liu, Yingjie & Mu, Lin, 2024. "Evaluation of by-product-gas utilization options for carbon reduction at an integrated iron and steel mill," Energy, Elsevier, vol. 294(C).
    2. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    3. Yuanxiang Lu & Zeyi Jiang & Xinru Zhang & Dianyu E, 2024. "Solid Flow in an Experimental Oxygen Blast Furnace Model: Effects of Recycled Gas and Raceway," Energies, MDPI, vol. 17(2), pages 1-12, January.
    4. Xue, Xue & Liu, Xiang & Zhu, Yifan & Yuan, Lei & Zhu, Ying & Jin, Kelang & Zhang, Lei & Zhou, Hao, 2023. "Numerical modeling and parametric study of the heat storage process of the 1.05 MW molten salt furnace," Energy, Elsevier, vol. 282(C).
    5. Yuan, Yuxing & Na, Hongming & Chen, Chuang & Qiu, Ziyang & Sun, Jingchao & Zhang, Lei & Du, Tao & Yang, Yuhang, 2024. "Status, challenges, and prospects of energy efficiency improvement methods in steel production: A multi-perspective review," Energy, Elsevier, vol. 304(C).
    6. Zhang, Huining & Liu, Xueting & Wang, Pufan & Wang, Qiqi & Lu, Liping & Yang, Liang & Jiang, Pingguo & Liang, Yong & Liao, Chunfa, 2024. "Hydrogen-rich carbon recycling complex system establishment and comprehensive evaluation," Applied Energy, Elsevier, vol. 355(C).
    7. Zheng, Kaiyue & Han, Hengda & Hu, Song & Ren, Qiangqiang & Su, Sheng & Wang, Yi & Jiang, Long & Xu, Jun & Li, Hanjian & Tong, Yuxing & Xiang, Jun, 2023. "Upgrading biomass waste to bio-coking coal by pressurized torrefaction: Synergistic effect between corncob and lignin," Energy, Elsevier, vol. 267(C).
    8. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    9. Jia Liu & Shuo Li & Raf Dewil & Maarten Vanierschot & Jan Baeyens & Yimin Deng, 2022. "Water Splitting by MnO x /Na 2 CO 3 Reversible Redox Reactions," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    10. Li, Qiangwei & Huang, Xin & Li, Nuo & Qi, Tieyue & Wang, Rujie & Wang, Lidong & An, Shanlong, 2024. "Energy-efficient biphasic solvents for industrial CO2 capture: Absorption mechanism and stability characteristics," Energy, Elsevier, vol. 293(C).
    11. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    12. Li, Zhaoyang & Qi, Zheng & Wang, Zhongxue & Ji, Li & Li, Zheng, 2025. "Numerical investigation of scrap charging into an ironmaking blast furnace," Energy, Elsevier, vol. 315(C).
    13. Kim, Seonggon & Ko, Yunmo & Lee, Geun Jeong & Lee, Jae Won & Xu, Ronghuan & Ahn, Hyungseop & Kang, Yong Tae, 2023. "Sustainable energy harvesting from post-combustion CO2 capture using amine-functionalized solvents," Energy, Elsevier, vol. 267(C).
    14. Adeel ur Rehman & Bhajan Lal, 2022. "RETRACTED: Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1-27, November.
    15. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    16. Chen, Shiyi & Zhou, Nan & Wu, Mudi & Chen, Shubo & Xiang, Wenguo, 2022. "Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture," Energy, Elsevier, vol. 254(PA).
    17. Harvey, L.D. Danny, 2024. "A bottom-up assessment of recent (2016–20) energy use by the global iron and steel industry constrained to match a top-down (International Energy Agency) assessment," Energy, Elsevier, vol. 293(C).
    18. Alberto Maria Gambelli, 2023. "CCUS Strategies as Most Viable Option for Global Warming Mitigation," Energies, MDPI, vol. 16(10), pages 1-4, May.
    19. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Bukar, Ahmed M. & Asif, Muhammad, 2024. "Technology readiness level assessment of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.