IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v258y2022ics036054422201790x.html
   My bibliography  Save this article

Hierarchical model to find the path reducing CO2 emissions of integrated iron and steel production

Author

Listed:
  • Chen, Demin
  • Li, Jiaqi
  • Wang, Zhao
  • Lu, Biao
  • Chen, Guang

Abstract

Improving CO2 emission status of the iron and steel industry is an important problem for China to be able to reach low-carbon development goals. A hierarchical model of CO2 emission was established to find the way to reduce emissions from the iron containing material flow network and the energy flow network in this paper. This model was developed not only based on the interconnection and interrelationship among the iron containing material flow, energy flow and carbon emission, but also added the impact of energies buffer and adjustment. Case study shown that, CO2 emission intensity was 2.23 t/t_s. Significant reasons affecting the CO2 emission intensity, which were the release of gases, the mismatch between coking and iron making capacity, and the less utilization of scrap in convertor, were found. Three optimization scenarios were proposed. Calculation results shown that, CO2 emissions intensity was reduced by 0.01 t/t_s, 0.02 t/t_s and 0.02 t/t_s, respectively. Comparing each scenario with the previous, blast furnace gas buffer capacities were 47.6 × 103tce, 8.4 × 103tce, 25.1 × 103tce, and coke oven gas buffer capacities were 56.3 × 103tce, 20.7 × 103tce, −38.5 × 103tce. At last, some strategy suggestions were put forward.

Suggested Citation

  • Chen, Demin & Li, Jiaqi & Wang, Zhao & Lu, Biao & Chen, Guang, 2022. "Hierarchical model to find the path reducing CO2 emissions of integrated iron and steel production," Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:energy:v:258:y:2022:i:c:s036054422201790x
    DOI: 10.1016/j.energy.2022.124887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201790X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
    2. Wang, Xiaolei & Wen, Xiaohui & Xie, Chunping, 2018. "An evaluation of technical progress and energy rebound effects in China's iron & steel industry," Energy Policy, Elsevier, vol. 123(C), pages 259-265.
    3. Teresa Torres, M. & Carmen Barros, M. & Bello, Pastora M. & Casares, Juan J. & Miguel Rodríguez-Blas, J., 2008. "Energy and material flow analysis: Application to the storage stage of clay in the roof-tile manufacture," Energy, Elsevier, vol. 33(6), pages 963-973.
    4. Yan, Lingyu & Wang, Anjian, 2014. "Based on material flow analysis: Value chain analysis of China iron resources," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 52-61.
    5. Wu, Junnian & Wang, Ruiqi & Pu, Guangying & Qi, Hang, 2016. "Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network," Applied Energy, Elsevier, vol. 183(C), pages 430-444.
    6. Chen, Demin & Lu, Biao & Dai, FangQin & Chen, Guang & Zhang, Xihe, 2018. "Bottleneck of slab thermal efficiency in reheating furnace based on energy apportionment model," Energy, Elsevier, vol. 150(C), pages 1058-1069.
    7. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    8. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
    9. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    10. Liu, Liru & Aye, Lu & Lu, Zhongwu & Zhang, Peihong, 2006. "Effect of material flows on energy intensity in process industries," Energy, Elsevier, vol. 31(12), pages 1870-1882.
    11. Nwachukwu, Chinedu Maureen & Wang, Chuan & Wetterlund, Elisabeth, 2021. "Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry – The case of Sweden," Applied Energy, Elsevier, vol. 288(C).
    12. Wen, Zongguo & Xu, Jinjing & Lee, Jason C.K. & Ren, Cuiping, 2017. "Symbiotic technology-based potential for energy saving: A case study in China's iron and steel industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1303-1311.
    13. Li, Zhaoling & Dai, Hancheng & Song, Junnian & Sun, Lu & Geng, Yong & Lu, Keyu & Hanaoka, Tatsuya, 2019. "Assessment of the carbon emissions reduction potential of China's iron and steel industry based on a simulation analysis," Energy, Elsevier, vol. 183(C), pages 279-290.
    14. Lin, Boqiang & Wang, Xiaolei, 2014. "Promoting energy conservation in China's iron & steel sector," Energy, Elsevier, vol. 73(C), pages 465-474.
    15. Hong, Seok-jin & Choi, Yoon-sil & Kim, Kyoung-ryun & Kang, Joon-gu & Oh, Gil-jong & Hur, Tak, 2011. "Material flow analysis of paper in Korea. Part I. Data calculation model from the flow relationships between paper products," Resources, Conservation & Recycling, Elsevier, vol. 55(12), pages 1206-1213.
    16. Andersen, Jan Peter & Hyman, Barry, 2001. "Energy and material flow models for the US steel industry," Energy, Elsevier, vol. 26(2), pages 137-159.
    17. Ates, Seyithan A., 2015. "Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system," Energy, Elsevier, vol. 90(P1), pages 417-428.
    18. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Zhu, Lei & Zhang, Xiao-Bing & Li, Yuan & Wang, Xu & Guo, Jianxin, 2017. "Can an emission trading scheme promote the withdrawal of outdated capacity in energy-intensive sectors? A case study on China's iron and steel industry," Energy Economics, Elsevier, vol. 63(C), pages 332-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuangping Wu & Anjun Xu, 2021. "Calculation Method of Energy Saving in Process Engineering: A Case Study of Iron and Steel Production Process," Energies, MDPI, vol. 14(18), pages 1-15, September.
    2. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Wang, Xiaoling & Zhang, Tianyue & Nathwani, Jatin & Yang, Fangming & Shao, Qinglong, 2022. "Environmental regulation, technology innovation, and low carbon development: Revisiting the EKC Hypothesis, Porter Hypothesis, and Jevons’ Paradox in China's iron & steel industry," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    4. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    5. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Qiu, Ziyang & Yuan, Yuxing & He, Jianfei & Li, Yingnan & Wang, Yisong & Du, Tao, 2021. "A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry," Energy, Elsevier, vol. 235(C).
    6. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    7. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
    8. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    9. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    10. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    11. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    12. Bingxin Zeng & Lei Zhu, 2019. "Market Power and Technology Diffusion in an Energy-Intensive Sector Covered by an Emissions Trading Scheme," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    13. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    14. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    15. Asghari, M. & Afshari, H. & Jaber, M.Y. & Searcy, C., 2023. "Credibility-based cascading approach to achieve net-zero emissions in energy symbiosis networks using an Organic Rankine Cycle," Applied Energy, Elsevier, vol. 340(C).
    16. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
    17. Nechifor, Victor & Calzadilla, Alvaro & Bleischwitz, Raimund & Winning, Matthew & Tian, Xu & Usubiaga, Arkaitz, 2020. "Steel in a circular economy: Global implications of a green shift in China," World Development, Elsevier, vol. 127(C).
    18. Bhadbhade, Navdeep & Zuberi, M. Jibran S. & Patel, Martin K., 2019. "A bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials for the swiss metals sector," Energy, Elsevier, vol. 181(C), pages 173-186.
    19. Zeng, Bingxin & Zhu, Lei & Yao, Xing, 2020. "Policy choice for end-of-pipe abatement technology adoption under technological uncertainty," Economic Modelling, Elsevier, vol. 87(C), pages 121-130.
    20. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:258:y:2022:i:c:s036054422201790x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.