IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v87y2020icp121-130.html
   My bibliography  Save this article

Policy choice for end-of-pipe abatement technology adoption under technological uncertainty

Author

Listed:
  • Zeng, Bingxin
  • Zhu, Lei
  • Yao, Xing

Abstract

Regulators have increasingly become concerned about end-of-pipe abatement technologies because they not only play a crucial role in air pollution control but also ensure the achievement of the deep carbon emissions reduction target. This paper investigates the effect of emission taxes and standards on the adoption of end-of-pipe abatement technology when the arrival time and degree of improvement of the new emissions abatement technology are uncertain. We find that the ranking of emission taxes and standards in terms of motivating early adoption depends on the policy stringency. More specifically, for high levels of environmental stringency, standards induce an earlier technology adoption than taxes, while the opposite conclusion holds for low levels of environmental stringency. The sensitivity analysis shows that these findings are robust to various relevant crucial parameters. Finally, the implications for the choice of environmental policy have been provided.

Suggested Citation

  • Zeng, Bingxin & Zhu, Lei & Yao, Xing, 2020. "Policy choice for end-of-pipe abatement technology adoption under technological uncertainty," Economic Modelling, Elsevier, vol. 87(C), pages 121-130.
  • Handle: RePEc:eee:ecmode:v:87:y:2020:i:c:p:121-130
    DOI: 10.1016/j.econmod.2019.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026499931930238X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2019.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Xing & Zhong, Ping & Zhang, Xian & Zhu, Lei, 2018. "Business model design for the carbon capture utilization and storage (CCUS) project in China," Energy Policy, Elsevier, vol. 121(C), pages 519-533.
    2. Bréchet, Thierry & Meunier, Guy, 2014. "Are clean technology and environmental quality conflicting policy goals?," Resource and Energy Economics, Elsevier, vol. 38(C), pages 61-83.
    3. Farzin, Y. H. & Huisman, K. J. M. & Kort, P. M., 1998. "Optimal timing of technology adoption," Journal of Economic Dynamics and Control, Elsevier, vol. 22(5), pages 779-799, May.
    4. Khanna, Madhu & Zilberman, David, 1997. "Incentives, precision technology and environmental protection," Ecological Economics, Elsevier, vol. 23(1), pages 25-43, October.
    5. Milliman, Scott R. & Prince, Raymond, 1992. "Firm incentives to promote technological change in pollution control: Reply," Journal of Environmental Economics and Management, Elsevier, vol. 22(3), pages 292-296, May.
    6. Montero, Juan-Pablo, 2002. "Permits, Standards, and Technology Innovation," Journal of Environmental Economics and Management, Elsevier, vol. 44(1), pages 23-44, July.
    7. Manuel Frondel & Jens Horbach & Klaus Rennings, 2007. "End‐of‐pipe or cleaner production? An empirical comparison of environmental innovation decisions across OECD countries," Business Strategy and the Environment, Wiley Blackwell, vol. 16(8), pages 571-584, December.
    8. Pindyck, Robert S., 2000. "Irreversibilities and the timing of environmental policy," Resource and Energy Economics, Elsevier, vol. 22(3), pages 233-259, July.
    9. Alfred Endres & Bianca Rundshagen, 2013. "Incentives to Diffuse Advanced Abatement Technology Under the Formation of International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(2), pages 177-210, October.
    10. Agliardi, Elettra & Sereno, Luigi, 2011. "The effects of environmental taxes and quotas on the optimal timing of emission reductions under Choquet–Brownian uncertainty," Economic Modelling, Elsevier, vol. 28(6), pages 2793-2802.
    11. Perino, Grischa & Requate, Till, 2012. "Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 456-467.
    12. Coria, Jessica, 2009. "Taxes, permits, and the diffusion of a new technology," Resource and Energy Economics, Elsevier, vol. 31(4), pages 249-271, November.
    13. Kenneth J. Arrow & Anthony C. Fisher, 1974. "Environmental Preservation, Uncertainty, and Irreversibility," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 4, pages 76-84, Palgrave Macmillan.
    14. van Soest, Daan P., 2005. "The impact of environmental policy instruments on the timing of adoption of energy-saving technologies," Resource and Energy Economics, Elsevier, vol. 27(3), pages 235-247, October.
    15. Harald Winkler & Randall Spalding-Fecher & Lwazikazi Tyani, 2002. "Comparing developing countries under potential carbon allocation schemes," Climate Policy, Taylor & Francis Journals, vol. 2(4), pages 303-318, December.
    16. Downing, Paul B. & White, Lawrence J., 1986. "Innovation in pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 13(1), pages 18-29, March.
    17. Till Requate & Wolfram Uunold, 2001. "On the Incentives Created by Policy Instruments to Adopt Advanced Abatement Technology if Firms are Asymmetric," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 157(4), pages 536-554, December.
    18. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    19. Jung, Chulho & Krutilla, Kerry & Boyd, Roy, 1996. "Incentives for Advanced Pollution Abatement Technology at the Industry Level: An Evaluation of Policy Alternatives," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 95-111, January.
    20. Hagspiel, Verena & Huisman, Kuno J.M. & Nunes, Clàudia, 2015. "Optimal technology adoption when the arrival rate of new technologies changes," European Journal of Operational Research, Elsevier, vol. 243(3), pages 897-911.
    21. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    22. von Döllen Andreas & Requate Till, 2008. "Environmental Policy and Uncertain Arrival of Future Abatement Technology," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 8(1), pages 1-20, August.
    23. L׳Orange Seigo, Selma & Dohle, Simone & Siegrist, Michael, 2014. "Public perception of carbon capture and storage (CCS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 848-863.
    24. Hammar, Henrik & Löfgren, Åsa, 2010. "Explaining adoption of end of pipe solutions and clean technologies--Determinants of firms' investments for reducing emissions to air in four sectors in Sweden," Energy Policy, Elsevier, vol. 38(7), pages 3644-3651, July.
    25. Moretto, Michele, 2000. "Irreversible investment with uncertainty and strategic behavior," Economic Modelling, Elsevier, vol. 17(4), pages 589-617, December.
    26. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    27. McCollum, David L & Ogden, Joan M, 2006. "Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity," Institute of Transportation Studies, Working Paper Series qt1zg00532, Institute of Transportation Studies, UC Davis.
    28. Requate, Till & Unold, Wolfram, 2003. "Environmental policy incentives to adopt advanced abatement technology:: Will the true ranking please stand up?," European Economic Review, Elsevier, vol. 47(1), pages 125-146, February.
    29. Zhu, Lei & Zhang, Xiao-Bing & Li, Yuan & Wang, Xu & Guo, Jianxin, 2017. "Can an emission trading scheme promote the withdrawal of outdated capacity in energy-intensive sectors? A case study on China's iron and steel industry," Energy Economics, Elsevier, vol. 63(C), pages 332-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tom Savage & Antonio del Rio Chanona & Gbemi Oluleye, 2023. "Robust Market Potential Assessment: Designing optimal policies for low-carbon technology adoption in an increasingly uncertain world," Papers 2304.10203, arXiv.org.
    2. Rodríguez-Espíndola, Oscar & Cuevas-Romo, Ana & Chowdhury, Soumyadeb & Díaz-Acevedo, Natalie & Albores, Pavel & Despoudi, Stella & Malesios, Chrisovalantis & Dey, Prasanta, 2022. "The role of circular economy principles and sustainable-oriented innovation to enhance social, economic and environmental performance: Evidence from Mexican SMEs," International Journal of Production Economics, Elsevier, vol. 248(C).
    3. Shi, Yingying & Wei, Zixiang & Shahbaz, Muhammad & Zeng, Yongchao, 2021. "Exploring the dynamics of low-carbon technology diffusion among enterprises: An evolutionary game model on a two-level heterogeneous social network," Energy Economics, Elsevier, vol. 101(C).
    4. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dagmar Nelissen & Till Requate, 2007. "Pollution-reducing and resource-saving technological progress," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 6(1), pages 5-44.
    2. Requate, Till, 2005. "Dynamic incentives by environmental policy instruments--a survey," Ecological Economics, Elsevier, vol. 54(2-3), pages 175-195, August.
    3. Bingxin Zeng & Lei Zhu, 2019. "Market Power and Technology Diffusion in an Energy-Intensive Sector Covered by an Emissions Trading Scheme," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    4. van Soest, Daan P., 2005. "The impact of environmental policy instruments on the timing of adoption of energy-saving technologies," Resource and Energy Economics, Elsevier, vol. 27(3), pages 235-247, October.
    5. Ye, Fanglin & Paulson, Nicholas & Khanna, Madhu, 2022. "Are renewable energy policies effective to promote technological change? The role of induced technological risk," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    6. Agliardi, Elettra & Sereno, Luigi, 2012. "Environmental protection, public finance requirements and the timing of emission reductions," Environment and Development Economics, Cambridge University Press, vol. 17(6), pages 715-739, December.
    7. Bouwe R. Dijkstra & Maria J. Gil‐Moltó, 2018. "Is emission intensity or output U‐shaped in the strictness of environmental policy?," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 20(2), pages 177-201, April.
    8. van Soest, D.P., 2005. "The impact of environmental policy instruments on the timing of adoption of energy-saving technologies," Other publications TiSEM 9ccb4811-1045-42cd-965f-2, Tilburg University, School of Economics and Management.
    9. Yan, Yan & Li, Yi, 2023. "Regulation, external R&D, and strategic diffusion of pollution abatement technology," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 731-744.
    10. Haiyang Xia & Tijun Fan & Xiangyun Chang, 2019. "Emission Reduction Technology Licensing and Diffusion Under Command-and-Control Regulation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 477-500, February.
    11. Eva Camacho-Cuena & Till Requate & Israel Waichman, 2012. "Investment Incentives Under Emission Trading: An Experimental Study," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(2), pages 229-249, October.
    12. Idrissa Sibailly, 2013. "On licensing and diffusion of clean technologies in oligopoly," Working Papers hal-00911453, HAL.
    13. Hammar, Henrik & Löfgren, Åsa, 2010. "Explaining adoption of end of pipe solutions and clean technologies--Determinants of firms' investments for reducing emissions to air in four sectors in Sweden," Energy Policy, Elsevier, vol. 38(7), pages 3644-3651, July.
    14. Lee, Jaegul & Veloso, Francisco M. & Hounshell, David A., 2011. "Linking induced technological change, and environmental regulation: Evidence from patenting in the U.S. auto industry," Research Policy, Elsevier, vol. 40(9), pages 1240-1252.
    15. Jessica Coria & Magnus Hennlock, 2012. "Taxes, permits and costly policy response to technological change," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(1), pages 35-60, January.
    16. Li, Shoude & Fu, Tong, 2022. "Abatement technology innovation, worker productivity and firm profitability: A dynamic analysis," Energy Economics, Elsevier, vol. 115(C).
    17. von Döllen, Andreas & Requate, Till, 2007. "Environmental Policy and Incentives to Invest in Advanced Abatement Technology if Arrival of Future Technology is Uncertain - Extended Version," Economics Working Papers 2007-04, Christian-Albrechts-University of Kiel, Department of Economics.
    18. Coria, Jessica, 2011. "Environmental crises' regulations, tradable permits and the adoption of new technologies," Resource and Energy Economics, Elsevier, vol. 33(3), pages 455-476, September.
    19. Jyh‐Bang Jou, 2004. "Environment, irreversibility and optimal effluent standards," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(1), pages 127-158, March.
    20. Perino, Grischa & Requate, Till, 2012. "Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 456-467.

    More about this item

    Keywords

    Emission taxes; Emission standards; End-of-pipe abatement technology; Technological uncertainty;
    All these keywords.

    JEL classification:

    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:87:y:2020:i:c:p:121-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.