IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01123273.html
   My bibliography  Save this paper

Are clean technology and environmental quality conflicting policy goals?

Author

Listed:
  • Thierry Brechet

    (Center for Operations Research and Econometrics CORE - UCL - Université Catholique de Louvain = Catholic University of Louvain, Louvain School of Management - UCL - Université Catholique de Louvain = Catholic University of Louvain)

  • Guy Meunier

    (ALISS - Alimentation et sciences sociales - INRA - Institut National de la Recherche Agronomique, X - École polytechnique - IP Paris - Institut Polytechnique de Paris)

Abstract

We analyze the effects of an environmental policy on the diffusion of a clean technology. Compared to previous articles we consider that the polluting firms are competitors on the output market and we analyze the effects of the policy on the share of adopting firms in the economy. We show that this share is not monotonic with the stringency of the environmental policy. We also compare the effects of an emission tax and tradable pollution permits and we show that, depending again on the stringency of the policy, either the tax or the permits yields a higher degree of technology adoption.

Suggested Citation

  • Thierry Brechet & Guy Meunier, 2014. "Are clean technology and environmental quality conflicting policy goals?," Post-Print hal-01123273, HAL.
  • Handle: RePEc:hal:journl:hal-01123273
    DOI: 10.1016/j.reseneeco.2014.06.002
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Weber, Thomas A. & Neuhoff, Karsten, 2010. "Carbon markets and technological innovation," Journal of Environmental Economics and Management, Elsevier, vol. 60(2), pages 115-132, September.
    2. Y.H. Farzin & P.M. Kort, 2000. "Pollution Abatement Investment When Environmental Regulation Is Uncertain," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 2(2), pages 183-212, April.
    3. Martin L. Weitzman, 1974. "Prices vs. Quantities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(4), pages 477-491.
    4. SANIN, Maria Eugenia & ZANAJ, Skerdilajda, 2007. "Environmental innovation under Cournot competition," LIDAM Discussion Papers CORE 2007050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Baker, Erin & Adu-Bonnah, Kwame, 2008. "Investment in risky R&D programs in the face of climate uncertainty," Energy Economics, Elsevier, vol. 30(2), pages 465-486, March.
    6. María-Eugenia Sanin & Skerdilajda Zanaj, 2011. "A Note on Clean Technology Adoption and its Influence on Tradeable Emission Permits Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(4), pages 561-567, April.
    7. Perino, Grischa & Requate, Till, 2012. "Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 456-467.
    8. Rabah Amir & Marc Germain & Vincent Van Steenberghe, 2008. "On the Impact of Innovation on the Marginal Abatement Cost Curve," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 10(6), pages 985-1010, December.
    9. Bréchet, Thierry & Jouvet, Pierre-André, 2008. "Environmental innovation and the cost of pollution abatement revisited," Ecological Economics, Elsevier, vol. 65(2), pages 262-265, April.
    10. Jung, Chulho & Krutilla, Kerry & Boyd, Roy, 1996. "Incentives for Advanced Pollution Abatement Technology at the Industry Level: An Evaluation of Policy Alternatives," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 95-111, January.
    11. Maria J. Gil-Molto & Bouwe Dijkstra, 2011. "Strictness of Environmental Policy and Investment in Abatement," Discussion Papers in Economics 11/35, Division of Economics, School of Business, University of Leicester.
    12. Sanin, Maria-Eugenia & Zanaj, Skerdilajda, 2012. "Clean Technology Adoption Under Cournot Competition," Strategic Behavior and the Environment, now publishers, vol. 2(2), pages 159-172, July.
    13. Requate, Till & Unold, Wolfram, 2003. "Environmental policy incentives to adopt advanced abatement technology:: Will the true ranking please stand up?," European Economic Review, Elsevier, vol. 47(1), pages 125-146, February.
    14. Yoram Bauman & Myunghun Lee & Karl Seeley, 2008. "Does Technological Innovation Really Reduce Marginal Abatement Costs? Some Theory, Algebraic Evidence, and Policy Implications," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(4), pages 507-527, August.
    15. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    16. Milliman, Scott R. & Prince, Raymond, 1989. "Firm incentives to promote technological change in pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 17(3), pages 247-265, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thierry Bréchet & Sylvette Ly, 2013. "The many traps of green technology promotion," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(1), pages 73-91, January.
    2. Lambertini, Luca & Poyago-Theotoky, Joanna & Tampieri, Alessandro, 2017. "Cournot competition and “green” innovation: An inverted-U relationship," Energy Economics, Elsevier, vol. 68(C), pages 116-123.
    3. Yue Zhu & Ziyuan Sun & Shiyu Zhang & Xiaolin Wang, 2021. "Economic Policy Uncertainty, Environmental Regulation, and Green Innovation—An Empirical Study Based on Chinese High-Tech Enterprises," IJERPH, MDPI, vol. 18(18), pages 1-19, September.
    4. Jana Stoever & John P. Weche, 2018. "Environmental Regulation and Sustainable Competitiveness: Evaluating the Role of Firm-Level Green Investments in the Context of the Porter Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 429-455, June.
    5. Gil-Moltó, Maria José & Varvarigos, Dimitrios, 2013. "Emission taxes and the adoption of cleaner technologies: The case of environmentally conscious consumers," Resource and Energy Economics, Elsevier, vol. 35(4), pages 486-504.
    6. Perino, Grischa & Requate, Till, 2012. "Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 456-467.
    7. Casini, Paolo & Valentini, Edilio, 2019. "Emissions Markets with Price Stabilizing Mechanisms: Possible Unpleasant Outcomes," ES: Economics for Sustainability 291801, Fondazione Eni Enrico Mattei (FEEM) > ES: Economics for Sustainability.
    8. Alfred Endres & Tim Friehe & Bianca Rundshagen, 2020. "Diffusion and adoption of advanced emission abatement technology induced by permit trading," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 22(5), pages 1313-1337, September.
    9. Haiyang Xia & Tijun Fan & Xiangyun Chang, 2019. "Emission Reduction Technology Licensing and Diffusion Under Command-and-Control Regulation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 477-500, February.
    10. Bouwe R. Dijkstra & Maria J. Gil‐Moltó, 2018. "Is emission intensity or output U‐shaped in the strictness of environmental policy?," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 20(2), pages 177-201, April.
    11. Idrissa Sibailly, 2013. "On licensing and diffusion of clean technologies in oligopoly," Working Papers hal-00911453, HAL.
    12. Lan, Jing & Munro, Alistair & Liu, Zhen, 2017. "Environmental regulatory stringency and the market for abatement goods and services in China," Resource and Energy Economics, Elsevier, vol. 50(C), pages 105-123.
    13. Inge M. Bijgaart & Sjak Smulders, 2018. "Does a Recession Call for Less Stringent Environmental Policy? A Partial-Equilibrium Second-Best Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(4), pages 807-834, August.
    14. Di Maria, Corrado & Smulders, Sjak, 2017. "A paler shade of green: Environmental policy under induced technical change," European Economic Review, Elsevier, vol. 99(C), pages 151-169.
    15. Zeng, Bingxin & Zhu, Lei & Yao, Xing, 2020. "Policy choice for end-of-pipe abatement technology adoption under technological uncertainty," Economic Modelling, Elsevier, vol. 87(C), pages 121-130.
    16. Li, Shoude & Fu, Tong, 2022. "Abatement technology innovation, worker productivity and firm profitability: A dynamic analysis," Energy Economics, Elsevier, vol. 115(C).
    17. Wenjun Sun & Naoto Jinji, 2014. "The Effects of Emission Taxes on Pollution through the Diffusion of Clean Technology:The Presence of Green Consumers," Discussion papers e-14-014, Graduate School of Economics Project Center, Kyoto University.
    18. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    19. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perino, Grischa & Requate, Till, 2012. "Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 456-467.
    2. Bouwe R. Dijkstra & Maria J. Gil‐Moltó, 2018. "Is emission intensity or output U‐shaped in the strictness of environmental policy?," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 20(2), pages 177-201, April.
    3. Endres, Alfred & Friehe, Tim, 2011. "Incentives to diffuse advanced abatement technology under environmental liability law," Journal of Environmental Economics and Management, Elsevier, vol. 62(1), pages 30-40, July.
    4. Haiyang Xia & Tijun Fan & Xiangyun Chang, 2019. "Emission Reduction Technology Licensing and Diffusion Under Command-and-Control Regulation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 477-500, February.
    5. D’Amato, Alessio & Dijkstra, Bouwe R., 2015. "Technology choice and environmental regulation under asymmetric information," Resource and Energy Economics, Elsevier, vol. 41(C), pages 224-247.
    6. Alessio D’Amato & Bouwe R. Dijkstra, 2018. "Adoption incentives and environmental policy timing under asymmetric information and strategic firm behaviour," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 125-155, January.
    7. Alfred Endres & Tim Friehe & Bianca Rundshagen, 2015. "Environmental liability law and R&D subsidies: results on the screening of firms and the use of uniform policy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(4), pages 521-541, October.
    8. Federico Boffa & Stefano Clò & Alessio D'Amato, 2013. "Environmental policy and incentives to adopt abatement technologies under endogenous uncertainty," Working Papers 5, Department of the Treasury, Ministry of the Economy and of Finance.
    9. Endres, Alfred & Friehe, Tim, 2011. "R&D and abatement under environmental liability law: Comparing incentives under strict liability and negligence if compensation differs from harm," Energy Economics, Elsevier, vol. 33(3), pages 419-425, May.
    10. Di Maria, Corrado & Smulders, Sjak, 2017. "A paler shade of green: Environmental policy under induced technical change," European Economic Review, Elsevier, vol. 99(C), pages 151-169.
    11. Alfred Endres & Tim Friehe & Bianca Rundshagen, 2020. "Diffusion and adoption of advanced emission abatement technology induced by permit trading," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 22(5), pages 1313-1337, September.
    12. Rabah Amir & Adriana Gama & Katarzyna Werner, 2018. "On Environmental Regulation of Oligopoly Markets: Emission versus Performance Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 147-167, May.
    13. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    14. Krysiak, Frank C., 2008. "Prices vs. quantities: The effects on technology choice," Journal of Public Economics, Elsevier, vol. 92(5-6), pages 1275-1287, June.
    15. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    16. Ekundayo Shittu & Geoffrey Parker & Xiaoyue Jiang, 2015. "Energy technology investments in competitive and regulatory environments," Environment Systems and Decisions, Springer, vol. 35(4), pages 453-471, December.
    17. Alfred Endres & Bianca Rundshagen, 2013. "Incentives to Diffuse Advanced Abatement Technology Under the Formation of International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(2), pages 177-210, October.
    18. Ye, Fanglin & Paulson, Nicholas & Khanna, Madhu, 2022. "Are renewable energy policies effective to promote technological change? The role of induced technological risk," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    19. Jackson Dorsey, 2019. "Waiting for the Courts: Effects of Policy Uncertainty on Pollution and Investment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(4), pages 1453-1496, December.
    20. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.

    More about this item

    Keywords

    instruments comparison; environmental regulation; technology adoption; marginal abatement costs; incentive; innovation;
    All these keywords.

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01123273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.