IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3384-d1121614.html
   My bibliography  Save this article

Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry

Author

Listed:
  • Bożena Gajdzik

    (Department of Industrial Informatics, Silesian University of Technology, 40-019 Katowice, Poland)

  • Radosław Wolniak

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Wies Grebski

    (Penn State Hazletonne, Pennsylvania State University, 76 University Drive, Hazletonne, PA 18202-8025, USA)

Abstract

The European steel industry is experiencing new challenges related to the market situation and climate policy. Experience from the period of pandemic restrictions and the effects of Russia’s armed invasion of Ukraine has given many countries a basis for including steel along with raw materials (coke, iron ore, electricity) in economic security products (CRMA). Steel is needed for economic infrastructure and construction development as well as a material for other industries (without steel, factories will not produce cars, machinery, ships, washing machines, etc.). In 2022, steelmakers faced a deepening energy crisis and economic slowdown. The market situation prompted steelmakers to impose restrictions on production volumes (worldwide production fell by 4% compared to the previous year). Despite the difficult economic situation of the steel industry (production in EU countries fell by 11% in 2022 compared to the previous year), the EU is strengthening its industrial decarbonisation policy (“Fit for 55”). The decarbonisation of steel production is set to accelerate by 2050. To sharply reduce carbon emissions, steel mills need new steelmaking technologies. The largest global, steelmakers are already investing in new technologies that will use green hydrogen (produced from renewable energy sources). Reducing iron ore with hydrogen plasma will drastically reduce CO 2 emissions (steel production using hydrogen could emit up to 95% less CO 2 than the current BF + BOF blast furnace + basic oxygen furnace integrated method). Investments in new technologies must be tailored to the steel industry. A net zero strategy (deep decarbonisation goal) may have different scenarios in different EU countries. The purpose of this paper was to introduce the conditions for investing in low-carbon steelmaking technologies in the Polish steel market and to develop (based on expert opinion) scenarios for the decarbonisation of the Polish steel industry.

Suggested Citation

  • Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3384-:d:1121614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Demin & Li, Jiaqi & Wang, Zhao & Lu, Biao & Chen, Guang, 2022. "Hierarchical model to find the path reducing CO2 emissions of integrated iron and steel production," Energy, Elsevier, vol. 258(C).
    2. Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2023. "Electricity and Heat Demand in Steel Industry Technological Processes in Industry 4.0 Conditions," Energies, MDPI, vol. 16(2), pages 1-29, January.
    3. Richardson-Barlow, Clare & Pimm, Andrew J. & Taylor, Peter G. & Gale, William F., 2022. "Policy and pricing barriers to steel industry decarbonisation: A UK case study," Energy Policy, Elsevier, vol. 168(C).
    4. Kirschen, Marcus & Badr, Karim & Pfeifer, Herbert, 2011. "Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry," Energy, Elsevier, vol. 36(10), pages 6146-6155.
    5. Anissa Nurdiawati & Frauke Urban, 2021. "Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies," Energies, MDPI, vol. 14(9), pages 1-33, April.
    6. Bożena Gajdzik & Włodzimierz Sroka & Jolita Vveinhardt, 2021. "Energy Intensity of Steel Manufactured Utilising EAF Technology as a Function of Investments Made: The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(16), pages 1-17, August.
    7. Nicole Bond & Robert Symonds & Robin Hughes, 2022. "Pressurized Chemical Looping for Direct Reduced Iron Production: Carbon Neutral Process Configuration and Performance," Energies, MDPI, vol. 15(14), pages 1-17, July.
    8. Mollie Painter & Sally Hibbert & Tim Cooper, 2019. "The Development of Responsible and Sustainable Business Practice: Value, Mind-Sets, Business-Models," Journal of Business Ethics, Springer, vol. 157(4), pages 885-891, July.
    9. Bożena Gajdzik & Włodzimierz Sroka, 2021. "Resource Intensity vs. Investment in Production Installations—The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(2), pages 1-16, January.
    10. Sandra Kiessling & Hamidreza Gohari Darabkhani & Abdel-Hamid Soliman, 2022. "The Bio Steel Cycle: 7 Steps to Net-Zero CO 2 Emissions Steel Production," Energies, MDPI, vol. 15(23), pages 1-22, November.
    11. Wesseling, J.H. & Lechtenböhmer, S. & Åhman, M. & Nilsson, L.J. & Worrell, E. & Coenen, L., 2017. "The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1303-1313.
    12. Radosław Wolniak & Sebastian Saniuk & Sandra Grabowska & Bożena Gajdzik, 2020. "Identification of Energy Efficiency Trends in the Context of the Development of Industry 4.0 Using the Polish Steel Sector as an Example," Energies, MDPI, vol. 13(11), pages 1-16, June.
    13. Valentin Vogl & Max Åhman & Lars J. Nilsson, 2021. "The making of green steel in the EU: a policy evaluation for the early commercialization phase," Climate Policy, Taylor & Francis Journals, vol. 21(1), pages 78-92, January.
    14. Tagliapietra, Simone & Zachmann, Georg & Edenhofer, Ottmar & Glachant, Jean-Michel & Linares, Pedro & Loeschel, Andreas, 2019. "The European union energy transition: Key priorities for the next five years," Energy Policy, Elsevier, vol. 132(C), pages 950-954.
    15. Paul Kerr & Donald R. Noble & Jonathan Hodges & Henry Jeffrey, 2021. "Implementing Radical Innovation in Renewable Energy Experience Curves," Energies, MDPI, vol. 14(9), pages 1-28, April.
    16. Bozena Gajdzik, 2021. "Transformation from Steelworks 3.0 to Steelworks 4.0: Key Technologies of Industry 4.0 and their Usefulness for Polish Steelworks in Direct Research," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 61-71.
    17. Bożena Gajdzik & Radosław Wolniak, 2021. "Digitalisation and Innovation in the Steel Industry in Poland—Selected Tools of ICT in an Analysis of Statistical Data and a Case Study," Energies, MDPI, vol. 14(11), pages 1-25, May.
    18. Kawai, Eiji & Ozawa, Akito & Leibowicz, Benjamin D., 2022. "Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan," Applied Energy, Elsevier, vol. 328(C).
    19. Bożena Gajdzik & Radosław Wolniak, 2021. "Transitioning of Steel Producers to the Steelworks 4.0—Literature Review with Case Studies," Energies, MDPI, vol. 14(14), pages 1-22, July.
    20. Bożena Gajdzik & Sandra Grabowska & Sebastian Saniuk & Tadeusz Wieczorek, 2020. "Sustainable Development and Industry 4.0: A Bibliometric Analysis Identifying Key Scientific Problems of the Sustainable Industry 4.0," Energies, MDPI, vol. 13(16), pages 1-27, August.
    21. Pardo, Nicolás & Moya, José Antonio, 2013. "Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry," Energy, Elsevier, vol. 54(C), pages 113-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Manowska & Anna Bluszcz & Iwona Chomiak-Orsa & Rafał Wowra, 2024. "Towards Energy Transformation: A Case Study of EU Countries," Energies, MDPI, vol. 17(7), pages 1-26, April.
    2. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    3. Katarzyna Tobór-Osadnik & Bożena Gajdzik & Grzegorz Strzelec, 2023. "Configurational Path of Decarbonisation Based on Coal Mine Methane (CMM): An Econometric Model for the Polish Mining Industry," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    4. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Wieslaw Wes Grebski & Taras Romanyshyn, 2023. "Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries," Energies, MDPI, vol. 16(21), pages 1-32, October.
    5. Bożena Gajdzik & Katarzyna Tobór-Osadnik & Radosław Wolniak & Wiesław Wes Grebski, 2024. "European Climate Policy in the Context of the Problem of Methane Emissions from Coal Mines in Poland," Energies, MDPI, vol. 17(10), pages 1-28, May.
    6. Anna Bluszcz & Anna Manowska & Nur Suhaili Mansor, 2024. "Assessment of the Potential of European Union Member States to Achieve Climate Neutrality," Sustainability, MDPI, vol. 16(3), pages 1-18, February.
    7. Izabela Jonek-Kowalska, 2023. "Motives for the Use of Photovoltaic Installations in Poland against the Background of the Share of Solar Energy in the Structure of Energy Resources in the Developing Economies of Central and Eastern ," Resources, MDPI, vol. 12(8), pages 1-25, July.
    8. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
    9. Josué Rodríguez Diez & Silvia Tomé-Torquemada & Asier Vicente & Jon Reyes & G. Alonso Orcajo, 2023. "Decarbonization Pathways, Strategies, and Use Cases to Achieve Net-Zero CO 2 Emissions in the Steelmaking Industry," Energies, MDPI, vol. 16(21), pages 1-31, October.
    10. Bożena Gajdzik & Rafał Nagaj & Radosław Wolniak & Dominik Bałaga & Brigita Žuromskaitė & Wiesław Wes Grebski, 2024. "Renewable Energy Share in European Industry: Analysis and Extrapolation of Trends in EU Countries," Energies, MDPI, vol. 17(11), pages 1-38, May.
    11. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Brigita Žuromskaitė-Nagaj & Wieslaw Wes Grebski, 2024. "The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis," Energies, MDPI, vol. 17(4), pages 1-51, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2023. "Electricity and Heat Demand in Steel Industry Technological Processes in Industry 4.0 Conditions," Energies, MDPI, vol. 16(2), pages 1-29, January.
    2. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    3. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    4. Bozena Gajdzik, 2022. "How Steel Mills Transform into Smart Mills: Digital Changes and Development Determinants in the Polish Steel Industry," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 27-42.
    5. Katarzyna Tobór-Osadnik & Bożena Gajdzik & Grzegorz Strzelec, 2023. "Configurational Path of Decarbonisation Based on Coal Mine Methane (CMM): An Econometric Model for the Polish Mining Industry," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    6. Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2022. "An Econometric Model of the Operation of the Steel Industry in POLAND in the Context of Process Heat and Energy Consumption," Energies, MDPI, vol. 15(21), pages 1-26, October.
    7. Bożena Gajdzik & Radosław Wolniak, 2021. "Transitioning of Steel Producers to the Steelworks 4.0—Literature Review with Case Studies," Energies, MDPI, vol. 14(14), pages 1-22, July.
    8. Anna Kwiotkowska & Radosław Wolniak & Bożena Gajdzik & Magdalena Gębczyńska, 2022. "Configurational Paths of Leadership Competency Shortages and 4.0 Leadership Effectiveness: An fs/QCA Study," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    9. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    10. Bożena Gajdzik & Włodzimierz Sroka & Jolita Vveinhardt, 2021. "Energy Intensity of Steel Manufactured Utilising EAF Technology as a Function of Investments Made: The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(16), pages 1-17, August.
    11. Bozena Gajdzik, 2022. "A Decade of Research on Industry 4.0: A Bibliometric Study of Key Research Areas with Life Cycle Analysis of Publication Dynamics," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 118-134.
    12. Bożena Gajdzik & Radosław Wolniak, 2021. "Digitalisation and Innovation in the Steel Industry in Poland—Selected Tools of ICT in an Analysis of Statistical Data and a Case Study," Energies, MDPI, vol. 14(11), pages 1-25, May.
    13. Richardson-Barlow, Clare & Pimm, Andrew J. & Taylor, Peter G. & Gale, William F., 2022. "Policy and pricing barriers to steel industry decarbonisation: A UK case study," Energy Policy, Elsevier, vol. 168(C).
    14. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    15. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    16. Nestor Shpak & Solomiya Ohinok & Ihor Kulyniak & W³odzimierz Sroka & Armenia Androniceanu, 2022. "Macroeconomic Indicators and CO2 Emissions in the EU Region," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 24(61), pages 817-817, August.
    17. Samet, Haidar & Ghanbari, Teymoor & Ghaisari, Jafar, 2014. "Maximizing the transferred power to electric arc furnace for having maximum production," Energy, Elsevier, vol. 72(C), pages 752-759.
    18. Haendel, Michael & Hirzel, Simon & Süß, Marlene, 2022. "Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen," Renewable Energy, Elsevier, vol. 190(C), pages 1100-1111.
    19. Arens, Marlene & Åhman, Max & Vogl, Valentin, 2021. "Which countries are prepared to green their coal-based steel industry with electricity? - Reviewing climate and energy policy as well as the implementation of renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Bozena Gajdzik, 2021. "Transformation from Steelworks 3.0 to Steelworks 4.0: Key Technologies of Industry 4.0 and their Usefulness for Polish Steelworks in Direct Research," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 61-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3384-:d:1121614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.