IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1627-d1619357.html
   My bibliography  Save this article

Polish Steel Production Under Conditions of Decarbonization—Steel Volume Forecasts Using Time Series and Multiple Linear Regression

Author

Listed:
  • Bożena Gajdzik

    (Department of Industrial Informatics, Faculty of Materials Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Radosław Wolniak

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Anna Sączewska-Piotrowska

    (Department of Labour Market Forecasting and Analysis, Faculty of Spatial Economy and Regions in Transition, University of Economics in Katowice, 40-287 Katowice, Poland)

  • Wiesław Wes Grebski

    (Penn State Hazleton, Pennsylvania State University, 76 University Drive, Hazleton, PA 18202, USA)

Abstract

This paper will discuss the dynamics of steel production in Poland in light of the forecasts of tendencies under conditions of decarbonization. The research presented will be an attempt, using data from 2006 to 2023, to create econometric models and forecast production volumes until 2028, along with influencing factors. The obtained models were compared by calculating their error metrics. Based on the conducted econometric models, the critical determinants of the decarbonization of the industry have been established. Forecasts of the volume of steel production in Poland are downward in the face of the increasingly clear emphasis on strategic investments in low-emission technologies. This paper consists of two research parts. The first concerns the forecasting of steel production volume, and the second concerns the modeling of the steel production process, taking into account the key determinants of technological processes (EAF and BOF). Forecasts were calculated for each econometric model. This analysis is a contribution to a broader discussion on industrial adaptation and sustainable development in the steel sector. The developed models and forecasts can provide decision-makers and industry stakeholders with important information at the stage of the decision-making process concerned with developing a strategy for the decarbonization of steelmaking processes. In Poland, two technologies of steel production are used: BOF and EAF. In accordance with the assumptions of deep decarbonization, BF-BOF technology must be replaced by DRI-EAF technology.

Suggested Citation

  • Bożena Gajdzik & Radosław Wolniak & Anna Sączewska-Piotrowska & Wiesław Wes Grebski, 2025. "Polish Steel Production Under Conditions of Decarbonization—Steel Volume Forecasts Using Time Series and Multiple Linear Regression," Energies, MDPI, vol. 18(7), pages 1-38, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1627-:d:1619357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Chatfield, 1978. "The Holt‐Winters Forecasting Procedure," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 27(3), pages 264-279, November.
    2. Napp, T.A. & Gambhir, A. & Hills, T.P. & Florin, N. & Fennell, P.S, 2014. "A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 616-640.
    3. Inacio, C.M.C. & Kristoufek, L. & David, S.A., 2023. "Assessing the impact of the Russia–Ukraine war on energy prices: A dynamic cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    4. Anissa Nurdiawati & Frauke Urban, 2021. "Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies," Energies, MDPI, vol. 14(9), pages 1-33, April.
    5. Bożena Gajdzik & Włodzimierz Sroka & Jolita Vveinhardt, 2021. "Energy Intensity of Steel Manufactured Utilising EAF Technology as a Function of Investments Made: The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(16), pages 1-17, August.
    6. Rizwana Yasmeen & Wasi Ul Hassan Shah & Larisa Ivascu & Rui Tao & Muddassar Sarfraz, 2022. "Energy Crisis, Firm Productivity, Political Crisis, and Sustainable Growth of the Textile Industry: An Emerging Economy Perspective," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    7. Witt, Stephen F. & Witt, Christine A., 1995. "Forecasting tourism demand: A review of empirical research," International Journal of Forecasting, Elsevier, vol. 11(3), pages 447-475, September.
    8. Hao, Xiaoqing & An, Haizhong & Jiang, Meihui & Sun, Xiaoqi, 2024. "Supply shock propagation in the multi-layer network of global steel product chain: Additive effect of trade and production," Resources Policy, Elsevier, vol. 89(C).
    9. Bożena Gajdzik & Włodzimierz Sroka, 2021. "Resource Intensity vs. Investment in Production Installations—The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(2), pages 1-16, January.
    10. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    11. Michas, Serafeim & Flamos, Alexandros, 2024. "Least-cost or sustainable? Exploring power sector transition pathways," Energy, Elsevier, vol. 296(C).
    12. Wesseling, J.H. & Lechtenböhmer, S. & Åhman, M. & Nilsson, L.J. & Worrell, E. & Coenen, L., 2017. "The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1303-1313.
    13. Lee, Hwarang, 2023. "Decarbonization strategies for steel production with uncertainty in hydrogen direct reduction," Energy, Elsevier, vol. 283(C).
    14. Ozili, Peterson K, 2024. "Global Economic Consequences of Russian Invasion of Ukraine," MPRA Paper 120781, University Library of Munich, Germany.
    15. Izabela Jonek-Kowalska, 2022. "Assessing the energy security of European countries in the resource and economic context," Oeconomia Copernicana, Institute of Economic Research, vol. 13(2), pages 301-334, June.
    16. Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.
    17. Kimon Keramidas & Silvana Mima & Adrien Bidaud, 2024. "Opportunities and roadblocks in the decarbonisation of the global steel sector: A demand and production modelling approach," Post-Print hal-04383385, HAL.
    18. Cheng Zhou & Ruilian Zhang & Julia Loginova & Vigya Sharma & Zhonghua Zhang & Zaijian Qian, 2022. "Institutional Logic of Carbon Neutrality Policies in China: What Can We Learn?," Energies, MDPI, vol. 15(12), pages 1-16, June.
    19. Magdalena Skrzyniarz & Marcin Sajdak & Monika Zajemska & Anna Biniek-Poskart & Józef Iwaszko & Andrzej Skibiński, 2023. "Possibilities of RDF Pyrolysis Products Utilization in the Face of the Energy Crisis," Energies, MDPI, vol. 16(18), pages 1-19, September.
    20. Boldrini, Annika & Koolen, Derck & Crijns-Graus, Wina & van den Broek, Machteld, 2024. "The impact of decarbonising the iron and steel industry on European power and hydrogen systems," Applied Energy, Elsevier, vol. 361(C).
    21. Waddingham, Jacob A. & Chandler, Jeffrey A. & Alexander, Katherine C. & Zafar, Sana & Anglin, Aaron, 2025. "The leisure paradox for entrepreneurs: A neo-institutional theory perspective of disclosing leisure activities in crowdfunding pitches," Journal of Business Venturing, Elsevier, vol. 40(2).
    22. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Wieslaw Wes Grebski & Taras Romanyshyn, 2023. "Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries," Energies, MDPI, vol. 16(21), pages 1-32, October.
    23. Jack Copley, 2024. "Green Vulcans? The political economy of steel decarbonisation," New Political Economy, Taylor & Francis Journals, vol. 29(6), pages 972-985, November.
    24. Bo-Shu Li & Yan Chen & Shaohui Zhang & Zheru Wu & Janusz Cofala & Hancheng Dai, 2020. "Climate And Health Benefits Of Phasing Out Iron & Steel Production Capacity In China: Findings From The Imed Model," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-32, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.
    2. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    3. Katarzyna Tobór-Osadnik & Bożena Gajdzik & Grzegorz Strzelec, 2023. "Configurational Path of Decarbonisation Based on Coal Mine Methane (CMM): An Econometric Model for the Polish Mining Industry," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    4. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Brigita Žuromskaitė-Nagaj & Wiesław Grebski, 2024. "Energy Waste as a Side-Effect of Photovoltaic Development: Net Impact of Photovoltaics on CO 2 Emissions in European Union Countries," Energies, MDPI, vol. 18(1), pages 1-31, December.
    5. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
    6. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Brigita Žuromskaitė-Nagaj & Wieslaw Wes Grebski, 2024. "The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis," Energies, MDPI, vol. 17(4), pages 1-51, February.
    7. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    8. Bożena Gajdzik & Katarzyna Tobór-Osadnik & Radosław Wolniak & Wiesław Wes Grebski, 2024. "European Climate Policy in the Context of the Problem of Methane Emissions from Coal Mines in Poland," Energies, MDPI, vol. 17(10), pages 1-28, May.
    9. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    10. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Wieslaw Wes Grebski & Taras Romanyshyn, 2023. "Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries," Energies, MDPI, vol. 16(21), pages 1-32, October.
    11. Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
    12. Negrete, Moira & Fuentes, Marcelo & Kraslawski, Andrzej & Irarrazaval, Felipe & Herrera-León, Sebastián, 2024. "Socio-environmental implications of the decarbonization of copper and lithium mining and mineral processing," Resources Policy, Elsevier, vol. 95(C).
    13. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    14. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
    15. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
    16. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
    17. Nestor Shpak & Solomiya Ohinok & Ihor Kulyniak & W³odzimierz Sroka & Armenia Androniceanu, 2022. "Macroeconomic Indicators and CO2 Emissions in the EU Region," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 24(61), pages 817-817, August.
    18. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    19. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Qiu, Richard T.R. & Wu, Doris Chenguang & Dropsy, Vincent & Petit, Sylvain & Pratt, Stephen & Ohe, Yasuo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Asia and Pacific team," Annals of Tourism Research, Elsevier, vol. 88(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1627-:d:1619357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.