IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2396-d1395912.html
   My bibliography  Save this article

European Climate Policy in the Context of the Problem of Methane Emissions from Coal Mines in Poland

Author

Listed:
  • Bożena Gajdzik

    (Department of Industrial Informatics, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Katarzyna Tobór-Osadnik

    (Department of Safety Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Radosław Wolniak

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Wiesław Wes Grebski

    (Penn State Hazleton, Pennsylvania State University, 76 University Drive, Hazleton, PA 18202-8025, USA)

Abstract

This paper presents a thorough examination of methane capture from Polish coal mines, contextualized within the framework of the European Union’s (EU) climate policy objectives. Through a strategic analysis encompassing the interior of coal mines, the surrounding environment, and the macro environment, this study elucidates the complex dynamics involved in methane emissions and capture initiatives. The key findings include a declining trend in absolute methane emissions since 2008, despite fluctuations in coal extraction volumes, and a relatively stable level of methane capture exceeding 300 million m 3 /year since 2014. The analysis underscores the critical role of government support, both in terms of financial incentives and streamlined regulatory processes, to facilitate the integration of methane capture technologies into coal mining operations. Collaboration through partnerships and stakeholder engagement emerges as essential for overcoming resource competition and ensuring the long-term success of methane capture projects. This paper also highlights the economic and environmental opportunities presented by methane reserves, emphasizing the importance of investment in efficient extraction technologies. Despite these advancements, challenges persist, particularly regarding the low efficiency of current de-methanation technologies. Recommendations for modernization and technological innovation are proposed to enhance methane capture efficiency and utilization.

Suggested Citation

  • Bożena Gajdzik & Katarzyna Tobór-Osadnik & Radosław Wolniak & Wiesław Wes Grebski, 2024. "European Climate Policy in the Context of the Problem of Methane Emissions from Coal Mines in Poland," Energies, MDPI, vol. 17(10), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2396-:d:1395912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Proost, Stef, 2024. "Looking for winning policies to address the climate issue in EU-aviation," Journal of Air Transport Management, Elsevier, vol. 115(C).
    2. Bożena Gajdzik & Włodzimierz Sroka & Jolita Vveinhardt, 2021. "Energy Intensity of Steel Manufactured Utilising EAF Technology as a Function of Investments Made: The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(16), pages 1-17, August.
    3. Zhang, Xiao-Bing & Xu, Jing, 2018. "Optimal policies for climate change: A joint consideration of CO2 and methane," Applied Energy, Elsevier, vol. 211(C), pages 1021-1029.
    4. Ovaere, Marten & Proost, Stef, 2022. "Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package," Energy Policy, Elsevier, vol. 168(C).
    5. Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.
    6. Mathijs Harmsen & Detlef P. Vuuren & Benjamin Leon Bodirsky & Jean Chateau & Olivier Durand-Lasserve & Laurent Drouet & Oliver Fricko & Shinichiro Fujimori & David E. H. J. Gernaat & Tatsuya Hanaoka &, 2020. "The role of methane in future climate strategies: mitigation potentials and climate impacts," Climatic Change, Springer, vol. 163(3), pages 1409-1425, December.
    7. Haider Mahmood & Ateeq ur Rehman Irshad & Muhammad Tanveer, 2024. "Do innovation and renewable energy transition play their role in environmental sustainability in Western Europe?," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Tobór-Osadnik & Jacek Korski & Bożena Gajdzik & Radosław Wolniak & Wieslaw Grebski, 2025. "Gravity Energy Storage and Its Feasibility in the Context of Sustainable Energy Management with an Example of the Possibilities of Mine Shafts in Poland," Energies, MDPI, vol. 18(13), pages 1-23, June.
    2. Xiaonan Zhu & Cheng Zhou & Clare Richardson-Barlow, 2025. "Assessing Policy Consistency and Synergy in China’s Water–Energy–Land–Food Nexus for Low-Carbon Transition," Land, MDPI, vol. 14(7), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
    2. Bożena Gajdzik & Radosław Wolniak & Wiesław Grebski, 2025. "An Econometric Analysis of CO 2 Emission Intensity in Poland’s Blast Furnace–Basic Oxygen Furnace Steelmaking Process," Sustainability, MDPI, vol. 17(9), pages 1-30, April.
    3. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Brigita Žuromskaitė-Nagaj & Wieslaw Wes Grebski, 2024. "The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis," Energies, MDPI, vol. 17(4), pages 1-51, February.
    4. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Wieslaw Wes Grebski & Taras Romanyshyn, 2023. "Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries," Energies, MDPI, vol. 16(21), pages 1-32, October.
    5. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    6. Katarzyna Tobór-Osadnik & Bożena Gajdzik & Grzegorz Strzelec, 2023. "Configurational Path of Decarbonisation Based on Coal Mine Methane (CMM): An Econometric Model for the Polish Mining Industry," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    7. Bożena Gajdzik & Radosław Wolniak & Anna Sączewska-Piotrowska & Wiesław Wes Grebski, 2025. "Polish Steel Production Under Conditions of Decarbonization—Steel Volume Forecasts Using Time Series and Multiple Linear Regression," Energies, MDPI, vol. 18(7), pages 1-38, March.
    8. Ovaere, Marten & Proost, Stef, 2025. "Strategic climate policy in global aviation: Aviation fuel taxes and efficiency standards with duopolistic aircraft producers," Economics of Transportation, Elsevier, vol. 41(C).
    9. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Brigita Žuromskaitė-Nagaj & Wiesław Grebski, 2024. "Energy Waste as a Side-Effect of Photovoltaic Development: Net Impact of Photovoltaics on CO 2 Emissions in European Union Countries," Energies, MDPI, vol. 18(1), pages 1-31, December.
    10. Gitelman, Lazar & Kozhevnikov, Mikhail & Ditenberg, Maksim, 2024. "Electrification as a factor in replacing hydrocarbon fuel," Energy, Elsevier, vol. 307(C).
    11. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    12. Jinpeng Yang, 2023. "Transaction decision optimization of new electricity market based on virtual power plant participation and Stackelberg game," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-20, April.
    13. Xiaonan Zhu & Cheng Zhou & Clare Richardson-Barlow, 2025. "Assessing Policy Consistency and Synergy in China’s Water–Energy–Land–Food Nexus for Low-Carbon Transition," Land, MDPI, vol. 14(7), pages 1-20, July.
    14. Zbigniew Olczykowski, 2024. "The Impact of Post-Furnace Steel Processing Equipment on Reducing Voltage Fluctuations Caused by Arc Furnaces," Energies, MDPI, vol. 17(21), pages 1-15, October.
    15. Speth, Daniel & Plötz, Patrick & Wietschel, Martin, 2025. "An optimal capacity-constrained fast charging network for battery electric trucks in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 193(C).
    16. Mathijs Harmsen & Charlotte Tabak & Lena Höglund-Isaksson & Florian Humpenöder & Pallav Purohit & Detlef Vuuren, 2023. "Uncertainty in non-CO2 greenhouse gas mitigation contributes to ambiguity in global climate policy feasibility," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Svetlana Proskurina & Clara Mendoza-Martinez, 2023. "Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU," Energies, MDPI, vol. 16(14), pages 1-16, July.
    18. Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.
    19. Tayebeh Sadat Tabatabaei & Pedram Asef, 2021. "Evaluation of Energy Price Liberalization in Electricity Industry: A Data-Driven Study on Energy Economics," Energies, MDPI, vol. 14(22), pages 1-19, November.
    20. Wang, Yingzhi & Jiang, Xiushan & Ma, Jihui, 2025. "Emissions reduction of air transport and high-speed rail with policy intervention considering the modal competition in a network market: Environment and welfare implications," Transport Policy, Elsevier, vol. 162(C), pages 379-395.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2396-:d:1395912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.