IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v211y2018icp1021-1029.html
   My bibliography  Save this article

Optimal policies for climate change: A joint consideration of CO2 and methane

Author

Listed:
  • Zhang, Xiao-Bing
  • Xu, Jing

Abstract

Climate change mitigation requires the reduction of greenhouse gas (GHG) emissions. The majority of the discussions on climate change policy focus exclusively on the reduction of carbon dioxide (CO2) emissions but ignore other important GHGs such as methane. This paper investigates the optimal choice of policy instruments under the joint consideration of CO2 and methane in a dynamic setting with asymmetric information and pollutant correlations. We develop a dynamic programming model with two state variables and calibrate it to the global warming case. The results show that it is optimal to levy tax on both CO2 and methane. A mixed strategy that implements a tax on CO2 and a quota on methane is the second-ranked choice.

Suggested Citation

  • Zhang, Xiao-Bing & Xu, Jing, 2018. "Optimal policies for climate change: A joint consideration of CO2 and methane," Applied Energy, Elsevier, vol. 211(C), pages 1021-1029.
  • Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:1021-1029
    DOI: 10.1016/j.apenergy.2017.10.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larry Karp & Jiangfeng Zhang, 2016. "Taxes Versus Quantities for a Stock Pollutant with Endogenous Abatement Costs and Asymmetric Information," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 493-533, Springer.
    2. Ambec, Stefan & Coria, Jessica, 2018. "Policy spillovers in the regulation of multiple pollutants," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 114-134.
    3. Timo Kuosmanen & Marita Laukkanen, 2011. "(In)Efficient Environmental Policy with Interacting Pollutants," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(4), pages 629-649, April.
    4. Ambec, Stefan & Coria, Jessica, 2013. "Prices vs quantities with multiple pollutants," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 123-140.
    5. Martin L. Weitzman, 1974. "Prices vs. Quantities," Review of Economic Studies, Oxford University Press, vol. 41(4), pages 477-491.
    6. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    7. Roughgarden, Tim & Schneider, Stephen H., 1999. "Climate change policy: quantifying uncertainties for damages and optimal carbon taxes," Energy Policy, Elsevier, vol. 27(7), pages 415-429, July.
    8. Hoel, Michael & Karp, Larry, 2001. "Taxes and quotas for a stock pollutant with multiplicative uncertainty," Journal of Public Economics, Elsevier, vol. 82(1), pages 91-114, October.
    9. Moslener, Ulf & Requate, Till, 2009. "The dynamics of optimal abatement strategies for multiple pollutants--An illustration in the Greenhouse," Ecological Economics, Elsevier, vol. 68(5), pages 1521-1534, March.
    10. Chang, Kai & Chang, Hao, 2016. "Cutting CO2 intensity targets of interprovincial emissions trading in China," Applied Energy, Elsevier, vol. 163(C), pages 211-221.
    11. Caplan, Arthur J. & Silva, Emilson C.D., 2005. "An efficient mechanism to control correlated externalities: redistributive transfers and the coexistence of regional and global pollution permit markets," Journal of Environmental Economics and Management, Elsevier, vol. 49(1), pages 68-82, January.
    12. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    13. Chiu, Fan-Ping & Kuo, Hsiao-I. & Chen, Chi-Chung & Hsu, Chia-Sheng, 2015. "The energy price equivalence of carbon taxes and emissions trading—Theory and evidence," Applied Energy, Elsevier, vol. 160(C), pages 164-171.
    14. Hoel, Michael & Karp, Larry, 2002. "Taxes versus quotas for a stock pollutant," Resource and Energy Economics, Elsevier, vol. 24(4), pages 367-384, November.
    15. Stephen P. Holland, 2010. "Spillovers from Climate Policy," NBER Working Papers 16158, National Bureau of Economic Research, Inc.
    16. Silva, Emilson C.D. & Zhu, Xie, 2009. "Emissions trading of global and local pollutants, pollution havens and free riding," Journal of Environmental Economics and Management, Elsevier, vol. 58(2), pages 169-182, September.
    17. Alfred Endres & Michael Finus, 2002. "Quotas May Beat Taxes in a Global Emission Game," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 9(6), pages 687-707, November.
    18. Pizer, William A., 2002. "Combining price and quantity controls to mitigate global climate change," Journal of Public Economics, Elsevier, vol. 85(3), pages 409-434, September.
    19. Liu, Yu & Lu, Yingying, 2015. "The Economic impact of different carbon tax revenue recycling schemes in China: A model-based scenario analysis," Applied Energy, Elsevier, vol. 141(C), pages 96-105.
    20. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    21. Moslener, Ulf & Requate, Till, 2007. "Optimal abatement in dynamic multi-pollutant problems when pollutants can be complements or substitutes," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2293-2316, July.
    22. Guy Meunier, 2015. "Prices vs. quantities in presence of a second, unpriced, externality," Working Papers hal-01242040, HAL.
    23. Wang, Qian & Hubacek, Klaus & Feng, Kuishuang & Wei, Yi-Ming & Liang, Qiao-Mei, 2016. "Distributional effects of carbon taxation," Applied Energy, Elsevier, vol. 184(C), pages 1123-1131.
    24. Zili Yang & Surabi Menon, 2013. "Tackling Negatively Correlated Global And Local Externalities — An Economic Study Of Multiple Gases Issue In Climate Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-21.
    25. Carl, Jeremy & Fedor, David, 2016. "Tracking global carbon revenues: A survey of carbon taxes versus cap-and-trade in the real world," Energy Policy, Elsevier, vol. 96(C), pages 50-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    2. Xiaowei Ma & Chuandong Li & Bin Li, 2019. "Carbon Emissions of China’s Cement Packaging: Life Cycle Assessment," Sustainability, MDPI, Open Access Journal, vol. 11(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John K. Stranlund & Insung Son, 2019. "Prices Versus Quantities Versus Hybrids in the Presence of Co-pollutants," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 353-384, June.
    2. Jing Xu, 2018. "International environmental agreements with agenda and interaction between pollutants," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(2), pages 153-174, April.
    3. Guy Meunier, 2015. "Prices vs. quantities in presence of a second, unpriced, externality," Working Papers hal-01242040, HAL.
    4. Gautier Luis, 2019. "The Role of Multiple Pollutants and Pollution Intensities in the Policy Reform of Taxes and Standards," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 19(3), pages 1-20, July.
    5. Ambec, Stefan & Coria, Jessica, 2013. "Prices vs quantities with multiple pollutants," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 123-140.
    6. Stranlund, John K. & Son, Insung, 2015. "Prices versus Quantities versus Hybrids in the Presence of Co-pollutants," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205422, Agricultural and Applied Economics Association.
    7. Elisabetta Cornago & Renaud Foucart, 2014. "Instrument Choice and Cost Uncertainty in the Electricity Market," Working Papers ECARES ECARES 2014-13, ULB -- Universite Libre de Bruxelles.
    8. Newell, Richard G. & Pizer, William A., 2003. "Regulating stock externalities under uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 416-432, March.
    9. Tang, Bao-Jun & Wang, Xiang-Yu & Wei, Yi-Ming, 2019. "Quantities versus prices for best social welfare in carbon reduction: A literature review," Applied Energy, Elsevier, vol. 233, pages 554-564.
    10. Cameron Hepburn, 2006. "Regulation by Prices, Quantities, or Both: A Review of Instrument Choice," Oxford Review of Economic Policy, Oxford University Press, vol. 22(2), pages 226-247, Summer.
    11. Halvor Briseid Storrøsten, 2012. "Prices vs. quantities: Technology choice, uncertainty and welfare," Discussion Papers 677, Statistics Norway, Research Department.
    12. Robert N. Stavins, 2020. "The Future of US Carbon-Pricing Policy," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 1(1), pages 8-64.
    13. James Shortle & Richard D. Horan, 2017. "Nutrient Pollution: A Wicked Challenge for Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-39, April.
    14. Fabio Antoniou & Efthymia Kyriakopoulou, 2019. "On the Strategic Effect of International Permits Trading on Local Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1299-1329, November.
    15. Ian A. MacKenzie, 2017. "Rent creation and rent seeking in environmental policy," Public Choice, Springer, vol. 171(1), pages 145-166, April.
    16. Crépin, Anne-Sophie & Norberg, Jon & Mäler, Karl-Göran, 2011. "Coupled economic-ecological systems with slow and fast dynamics -- Modelling and analysis method," Ecological Economics, Elsevier, vol. 70(8), pages 1448-1458, June.
    17. Stiglitz, Joseph E., 2019. "Addressing climate change through price and non-price interventions," European Economic Review, Elsevier, vol. 119(C), pages 594-612.
    18. Fell, Harrison & MacKenzie, Ian A. & Pizer, William A., 2012. "Prices versus quantities versus bankable quantities," Resource and Energy Economics, Elsevier, vol. 34(4), pages 607-623.
    19. Yu, Jongmin & Mallory, Mindy L., 2015. "An optimal hybrid emission control system in a multiple compliance period model," Resource and Energy Economics, Elsevier, vol. 39(C), pages 16-28.
    20. Liu, Yang & Han, Liyan & Yin, Ziqiao & Luo, Kongyi, 2017. "A competitive carbon emissions scheme with hybrid fiscal incentives: The evidence from a taxi industry," Energy Policy, Elsevier, vol. 102(C), pages 414-422.

    More about this item

    Keywords

    Policy design; Climate change; Greenhouse gases; Dynamic model; Multiple pollutants;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:1021-1029. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.