IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5554-d274508.html
   My bibliography  Save this article

Carbon Emissions of China’s Cement Packaging: Life Cycle Assessment

Author

Listed:
  • Xiaowei Ma

    (Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
    Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing 100081, China
    Sustainable Development Research Institute for Economy and Society of Beijing, Beijing 100081, China)

  • Chuandong Li

    (Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China)

  • Bin Li

    (Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
    School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China)

Abstract

China is the largest producer of cement in the world. With this tremendous production of cement, the extensively used cement packaging embodies significant carbon dioxide emissions. However, this has scarcely been investigated. This paper presents the first investigation into three types of cement packaging in China using the life cycle assessment methodology. The carbon dioxide emissions in each production phase of cement packaging were calculated and compared to the emissions in the western, middle, and eastern regions in China. The results show that in the production phase, the consumption of electricity accounted for the highest proportion of total carbon dioxide emissions (23.39–35.14%), followed by the consumption of polypropylene-based material (23.39%). From a packaging perspective, laminated plastic woven bags emitted the most carbon dioxide (0.637 kg/bag), followed by paper–plastic composite bags (0.536 kg/bag) and paper bags (0.022 kg/bag). In regional terms, the western region emitted the most carbon dioxide (3.06 million tons) compared with the eastern (2.01 million tons) and middle (1.81 million tons) regions due to the low bulk rate. Our findings indicate that using paper–plastic composite bags instead of laminated plastic woven bags and using recycled materials instead of new materials in certain production phases can considerably reduce the environmental impacts of cement packaging. The government should encourage the use of non-coal energy power generation for the production phase. Further improvements could focus on the use of bulk cement instead of packaged cement.

Suggested Citation

  • Xiaowei Ma & Chuandong Li & Bin Li, 2019. "Carbon Emissions of China’s Cement Packaging: Life Cycle Assessment," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5554-:d:274508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vellini, Michela & Gambini, Marco & Prattella, Valentina, 2017. "Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels," Energy, Elsevier, vol. 138(C), pages 1099-1111.
    2. Bulim Choi & Seungwoo Yoo & Su-il Park, 2018. "Carbon Footprint of Packaging Films Made from LDPE, PLA, and PLA/PBAT Blends in South Korea," Sustainability, MDPI, vol. 10(7), pages 1-11, July.
    3. Zhang, Xiao-Bing & Xu, Jing, 2018. "Optimal policies for climate change: A joint consideration of CO2 and methane," Applied Energy, Elsevier, vol. 211(C), pages 1021-1029.
    4. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    5. Giuseppe Cantisani & Paola Di Mascio & Laura Moretti, 2018. "Comparative Life Cycle Assessment of Lighting Systems and Road Pavements in an Italian Twin-Tube Road Tunnel," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    6. Jing An & Richard S. Middleton & Yingnan Li, 2019. "Environmental Performance Analysis of Cement Production with CO 2 Capture and Storage Technology in a Life-Cycle Perspective," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    7. Madlool, N.A. & Saidur, R. & Hossain, M.S. & Rahim, N.A., 2011. "A critical review on energy use and savings in the cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2042-2060, May.
    8. Li Li & Wenliang Wu & Paul Giller & John O’Halloran & Long Liang & Peng Peng & Guishen Zhao, 2018. "Life Cycle Assessment of a Highly Diverse Vegetable Multi-Cropping System in Fengqiu County, China," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz Ludwik Golewski, 2020. "Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition," Energies, MDPI, vol. 13(9), pages 1-20, May.
    2. Aranda Usón, Alfonso & López-Sabirón, Ana M. & Ferreira, Germán & Llera Sastresa, Eva, 2013. "Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 242-260.
    3. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    4. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    5. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    6. Sebastian Spierling & Venkateshwaran Venkatachalam & Marina Mudersbach & Nico Becker & Christoph Herrmann & Hans-Josef Endres, 2020. "End-of-Life Options for Bio-Based Plastics in a Circular Economy—Status Quo and Potential from a Life Cycle Assessment Perspective," Resources, MDPI, vol. 9(7), pages 1-20, July.
    7. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    8. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    9. Talaei, Alireza & Pier, David & Iyer, Aishwarya V. & Ahiduzzaman, Md & Kumar, Amit, 2019. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry," Energy, Elsevier, vol. 170(C), pages 1051-1066.
    10. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    11. Thopil, George Alex & Sachse, Christiaan Eddie & Lalk, Jörg & Thopil, Miriam Sara, 2020. "Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case," Applied Energy, Elsevier, vol. 275(C).
    12. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    13. Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
    14. Pasquali, Andrea & Klinge Jacobsen, Henrik, 2019. "Construction of energy savings cost curves: An application for Denmark," MPRA Paper 93076, University Library of Munich, Germany.
    15. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    16. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.
    17. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    18. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    19. Fabian Schoden & Marius Dotter & Dörthe Knefelkamp & Tomasz Blachowicz & Eva Schwenzfeier Hellkamp, 2021. "Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells," Energies, MDPI, vol. 14(13), pages 1-12, June.
    20. Baoqing Chen & Jixiao Cui & Wenyi Dong & Changrong Yan, 2023. "Effects of Biodegradable Plastic Film on Carbon Footprint of Crop Production," Agriculture, MDPI, vol. 13(4), pages 1-9, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5554-:d:274508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.