IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v27y2013icp198-203.html
   My bibliography  Save this article

A review on exergy analysis of industrial sector

Author

Listed:
  • BoroumandJazi, G.
  • Rismanchi, B.
  • Saidur, R.

Abstract

Performance analysis of industrial sector with high-energy consumption, about 30–70% of total energy use of the countries, is taken into consideration recently. A number of studies have been conducted on energy analysis of different industries and during the last decades exergy analysis applied to offer more realistic suggestions for optimization and improvement of the industrial sector. The present study reviews the existing studies on exergy analysis of industrial sector. The irreversibility and losses of industrial processes are also determined. It is concluded that industrial sector has a high potential of improving in order to reduce the energy consumption and emissions.

Suggested Citation

  • BoroumandJazi, G. & Rismanchi, B. & Saidur, R., 2013. "A review on exergy analysis of industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 198-203.
  • Handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:198-203
    DOI: 10.1016/j.rser.2013.06.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113004450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.06.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, Márcio Macedo & Schaeffer, Roberto & Worrell, Ernst, 2001. "Exergy accounting of energy and materials flows in steel production systems," Energy, Elsevier, vol. 26(4), pages 363-384.
    2. Al-Ghandoor, A. & Al-Hinti, I. & Jaber, J.O. & Sawalha, S.A., 2008. "Electricity consumption and associated GHG emissions of the Jordanian industrial sector: Empirical analysis and future projection," Energy Policy, Elsevier, vol. 36(1), pages 258-267, January.
    3. Utlu, Zafer & Hepbasli, Arif, 2008. "Energetic and exergetic assessment of the industrial sector at varying dead (reference) state temperatures: A review with an illustrative example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1277-1301, June.
    4. Kirova-Yordanova, Zornitza, 2004. "Exergy analysis of industrial ammonia synthesis," Energy, Elsevier, vol. 29(12), pages 2373-2384.
    5. Oladiran, M.T. & Meyer, J.P., 2007. "Energy and exergy analyses of energy consumptions in the industrial sector in South Africa," Applied Energy, Elsevier, vol. 84(10), pages 1056-1067, October.
    6. Utlu, Zafer & Hepbasli, Arif, 2007. "A review and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1438-1459, September.
    7. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2009. "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, Elsevier, vol. 86(6), pages 941-948, June.
    8. Rosen, M.A., 1992. "Evaluation of energy utilization efficiency in Canada using energy and exergy analyses," Energy, Elsevier, vol. 17(4), pages 339-350.
    9. Steenhof, Paul A., 2006. "Decomposition of electricity demand in China's industrial sector," Energy Economics, Elsevier, vol. 28(3), pages 370-384, May.
    10. Ahamed, J.U. & Saidur, R. & Masjuki, H.H., 2011. "A review on exergy analysis of vapor compression refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1593-1600, April.
    11. Al-Ghandoor, A. & Phelan, P.E. & Villalobos, R. & Jaber, J.O., 2010. "Energy and exergy utilizations of the U.S. manufacturing sector," Energy, Elsevier, vol. 35(7), pages 3048-3065.
    12. Saidur, R. & Ahamed, J.U. & Masjuki, H.H., 2010. "Energy, exergy and economic analysis of industrial boilers," Energy Policy, Elsevier, vol. 38(5), pages 2188-2197, May.
    13. Saidur, R. & Sattar, M.A. & Masjuki, H.H. & Ahmed, S. & Hashim, U., 2007. "An estimation of the energy and exergy efficiencies for the energy resources consumption in the transportation sector in Malaysia," Energy Policy, Elsevier, vol. 35(8), pages 4018-4026, August.
    14. Ayres, Robert U., 1998. "Eco-thermodynamics: economics and the second law," Ecological Economics, Elsevier, vol. 26(2), pages 189-209, August.
    15. Ostrovski, Oleg & Zhang, Guangqing, 2005. "Energy and exergy analyses of direct ironsmelting processes," Energy, Elsevier, vol. 30(15), pages 2772-2783.
    16. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    17. Madlool, N.A. & Saidur, R. & Hossain, M.S. & Rahim, N.A., 2011. "A critical review on energy use and savings in the cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2042-2060, May.
    18. Wall, Göran, 1988. "Exergy flows in industrial processes," Energy, Elsevier, vol. 13(2), pages 197-208.
    19. Saidur, R. & Sattar, M.A. & Masjuki, H.H. & Abdessalam, H. & Shahruan, B.S., 2007. "Energy and exergy analysis at the utility and commercial sectors of Malaysia," Energy Policy, Elsevier, vol. 35(3), pages 1956-1966, March.
    20. Rismanchi, B. & Saidur, R. & BoroumandJazi, G. & Ahmed, S., 2012. "Energy, exergy and environmental analysis of cold thermal energy storage (CTES) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5741-5746.
    21. Saidur, R. & Masjuki, H.H. & Jamaluddin, M.Y., 2007. "An application of energy and exergy analysis in residential sector of Malaysia," Energy Policy, Elsevier, vol. 35(2), pages 1050-1063, February.
    22. Al-Mansour, Fouad & Merse, Stane & Tomsic, Miha, 2003. "Comparison of energy efficiency strategies in the industrial sector of Slovenia," Energy, Elsevier, vol. 28(5), pages 421-440.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lingen & Shen, Xun & Xia, Shaojun & Sun, Fengrui, 2017. "Thermodynamic analyses for recovering residual heat of high-temperature basic oxygen gas (BOG) by the methane reforming with carbon dioxide reaction," Energy, Elsevier, vol. 118(C), pages 906-913.
    2. Liu, J. & Goel, A. & Kua, H.W. & Wang, C.H. & Peng, Y.H., 2021. "Evaluating the urban metabolism sustainability of municipal solid waste management system: An extended exergy accounting and indexing perspective," Applied Energy, Elsevier, vol. 300(C).
    3. Jedrzej Bylka & Tomasz Mróz, 2020. "Exergy Evaluation of a Water Distribution System," Energies, MDPI, vol. 13(23), pages 1-16, November.
    4. Chinhao Chong & Weidou Ni & Linwei Ma & Pei Liu & Zheng Li, 2015. "The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use," Energies, MDPI, vol. 8(4), pages 1-39, April.
    5. Santhanam, S. & Heddrich, M.P. & Riedel, M. & Friedrich, K.A., 2017. "Theoretical and experimental study of Reversible Solid Oxide Cell (r-SOC) systems for energy storage," Energy, Elsevier, vol. 141(C), pages 202-214.
    6. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    7. Meng, Sai & Zulli, Paul & Yang, Chaohe & Wang, Zhe & Meng, Qingbo & Zhang, Guangqing, 2022. "Energy and exergy analyses of an intensified char gasification process," Energy, Elsevier, vol. 239(PD).
    8. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    9. Utlu, Zafer, 2015. "Investigation of the potential for heat recovery at low, medium, and high stages in the Turkish industrial sector (TIS): An application," Energy, Elsevier, vol. 81(C), pages 394-405.
    10. Jahromi, Farid Sadeghian & Beheshti, Masoud & Rajabi, Razieh Fereydon, 2018. "Comparison between differential evolution algorithms and response surface methodology in ethylene plant optimization based on an extended combined energy - exergy analysis," Energy, Elsevier, vol. 164(C), pages 1114-1134.
    11. Kirova-Yordanova, Zornitza, 2017. "Exergy-based estimation and comparison of urea and ammonium nitrate production efficiency and environmental impact," Energy, Elsevier, vol. 140(P1), pages 158-169.
    12. Rong, W. & Li, B. & Liu, P. & Qi, F., 2017. "Exergy assessment of a rotary kiln-electric furnace smelting of ferronickel alloy," Energy, Elsevier, vol. 138(C), pages 942-953.
    13. Yali Wang & Haidong Yang & Kangkang Xu, 2020. "Thermal Performance Combined with Cooling System Parameters Study for a Roller Kiln Based on Energy-Exergy Analysis," Energies, MDPI, vol. 13(15), pages 1-31, July.
    14. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    15. Wu, Junnian & Wang, Ruiqi & Pu, Guangying & Qi, Hang, 2016. "Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network," Applied Energy, Elsevier, vol. 183(C), pages 430-444.
    16. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-Lopez & Mathias Glaus & Sara P. Ibarra-Zavaleta, 2018. "Carbon Dioxide Emissions, Energy Consumption and Economic Growth: A Comparative Empirical Study of Selected Developed and Developing Countries. “The Role of Exergy”," Energies, MDPI, vol. 11(10), pages 1-16, October.
    17. Francisco Jose Durán & Fernando Dorado & Luz Sanchez-Silva, 2020. "Exergetic and Economic Improvement for a Steam Methane-Reforming Industrial Plant: Simulation Tool," Energies, MDPI, vol. 13(15), pages 1-15, July.
    18. Azarpour, Abbas & Mohamadi-Baghmolaei, Mohamad & Hajizadeh, Abdollah & Zendehboudi, Sohrab, 2022. "Systematic energy and exergy assessment of a hydropurification process: Theoretical and practical insights," Energy, Elsevier, vol. 239(PC).
    19. Gupta, A. & Anand, Y. & Tyagi, S.K. & Anand, S., 2016. "Economic and thermodynamic study of different cooling options: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 164-194.
    20. Raul Arango Miranda & Robert Hausler & Rabindranarth Romero Lopez & Mathias Glaus & Jose Ramon Pasillas-Diaz, 2020. "Testing the Environmental Kuznets Curve Hypothesis in North America’s Free Trade Agreement (NAFTA) Countries," Energies, MDPI, vol. 13(12), pages 1-13, June.
    21. Areej Javed & Afaq Hassan & Muhammad Babar & Umair Azhar & Asim Riaz & Rana Mujahid & Tausif Ahmad & Muhammad Mubashir & Hooi Ren Lim & Pau Loke Show & Kuan Shiong Khoo, 2022. "A Comparison of the Exergy Efficiencies of Various Heat-Integrated Distillation Columns," Energies, MDPI, vol. 15(18), pages 1-15, September.
    22. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Ghandoor, A. & Phelan, P.E. & Villalobos, R. & Jaber, J.O., 2010. "Energy and exergy utilizations of the U.S. manufacturing sector," Energy, Elsevier, vol. 35(7), pages 3048-3065.
    2. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    3. Ahamed, J.U. & Madlool, N.A. & Saidur, R. & Shahinuddin, M.I. & Kamyar, A. & Masjuki, H.H., 2012. "Assessment of energy and exergy efficiencies of a grate clinker cooling system through the optimization of its operational parameters," Energy, Elsevier, vol. 46(1), pages 664-674.
    4. Hasanuzzaman, M. & Rahim, N.A. & Hosenuzzaman, M. & Saidur, R. & Mahbubul, I.M. & Rashid, M.M., 2012. "Energy savings in the combustion based process heating in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4527-4536.
    5. Saidur, R. & Ahamed, J.U. & Masjuki, H.H., 2010. "Energy, exergy and economic analysis of industrial boilers," Energy Policy, Elsevier, vol. 38(5), pages 2188-2197, May.
    6. Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
    7. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
    8. Ahamed, J.U. & Saidur, R. & Masjuki, H.H. & Mekhilef, S. & Ali, M.B. & Furqon, M.H., 2011. "An application of energy and exergy analysis in agricultural sector of Malaysia," Energy Policy, Elsevier, vol. 39(12), pages 7922-7929.
    9. Madlool, N.A. & Saidur, R. & Hossain, M.S. & Rahim, N.A., 2011. "A critical review on energy use and savings in the cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2042-2060, May.
    10. Jaber, J.O. & Al-Ghandoor, A. & Sawalha, S.A., 2008. "Energy analysis and exergy utilization in the transportation sector of Jordan," Energy Policy, Elsevier, vol. 36(8), pages 2985-2990, August.
    11. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    12. BoroumandJazi, G. & Saidur, R. & Rismanchi, B. & Mekhilef, S., 2012. "A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3131-3135.
    13. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
    14. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    15. Bühler, Fabian & Nguyen, Tuong-Van & Elmegaard, Brian, 2016. "Energy and exergy analyses of the Danish industry sector," Applied Energy, Elsevier, vol. 184(C), pages 1447-1459.
    16. Li, Sheng & Ji, Xiaozhou & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2014. "Coal to SNG: Technical progress, modeling and system optimization through exergy analysis," Applied Energy, Elsevier, vol. 136(C), pages 98-109.
    17. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.
    18. Christopher J. Koroneos & Evanthia A. Nanaki & George A. Xydis, 2012. "Sustainability Indicators for the Use of Resources—The Exergy Approach," Sustainability, MDPI, vol. 4(8), pages 1-12, August.
    19. Al-Mofleh, Anwar & Taib, Soib & Mujeebu, M. Abdul & Salah, Wael, 2009. "Analysis of sectoral energy conservation in Malaysia," Energy, Elsevier, vol. 34(6), pages 733-739.
    20. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:198-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.