IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0284030.html
   My bibliography  Save this article

Transaction decision optimization of new electricity market based on virtual power plant participation and Stackelberg game

Author

Listed:
  • Jinpeng Yang

Abstract

This study intends to optimize the trading decision-making strategy of the new electricity market with virtual power plants and improve the transmission efficiency of electricity resources. The current problems in China’s power market are analyzed from the perspective of virtual power plants, highlighting the necessity of reforming the power industry. The generation scheduling strategy is optimized in light of the market transaction decision based on the elemental power contract to enhance the effective transfer of power resources in virtual power plants. Ultimately, value distribution is balanced through virtual power plants to maximize the economic benefits. After 4 hours of simulation, the experimental data shows that 75 MWh of electricity is generated by the thermal power system, 100 MWh by the wind power system, and 200 MWh by the dispatchable load system. Comparatively, the new electricity market transaction model based on the virtual power plant has an actual generation capacity of 250MWh. In addition, the daily load power of the models of thermal power generation, wind power generation, and virtual power plant reported here are compared and analyzed. For a 4-hour simulation run, the thermal power generation system can provide 600 MW of load power, the wind power generation system can provide 730 MW of load power, and the virtual power plant-based power generation system can provide up to 1200 MW of load power. Therefore, the power generation performance of the model reported here is better than other power models. This study can potentially encourage a revised transaction model for the power industry market.

Suggested Citation

  • Jinpeng Yang, 2023. "Transaction decision optimization of new electricity market based on virtual power plant participation and Stackelberg game," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-20, April.
  • Handle: RePEc:plo:pone00:0284030
    DOI: 10.1371/journal.pone.0284030
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284030
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0284030&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0284030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang, Qing & Wang, Hao & Wang, Taotao & Zhang, Shengli & Wu, Xiaoxiao & Wang, Hui, 2021. "Blockchain-based decentralized energy management platform for residential distributed energy resources in a virtual power plant," Applied Energy, Elsevier, vol. 294(C).
    2. Ovaere, Marten & Proost, Stef, 2022. "Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package," Energy Policy, Elsevier, vol. 168(C).
    3. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    4. Xiangyu Li & Dongmei Zhao & Baicang Guo, 2018. "Decentralized and Collaborative Scheduling Approach for Active Distribution Network with Multiple Virtual Power Plants," Energies, MDPI, vol. 11(11), pages 1-18, November.
    5. Tomin, Nikita & Shakirov, Vladislav & Kozlov, Aleksander & Sidorov, Denis & Kurbatsky, Victor & Rehtanz, Christian & Lora, Electo E.S., 2022. "Design and optimal energy management of community microgrids with flexible renewable energy sources," Renewable Energy, Elsevier, vol. 183(C), pages 903-921.
    6. Ting Lu & Weige Zhang & Yunjia Wang & Hua Xie & Xiaowei Ding, 2022. "Medium- and Long-Term Trading Strategies for Large Electricity Retailers in China’s Electricity Market," Energies, MDPI, vol. 15(9), pages 1-30, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yuzheng & Dong, Jun & Huang, Hexiang, 2024. "Optimal bidding strategy for the price-maker virtual power plant in the day-ahead market based on multi-agent twin delayed deep deterministic policy gradient algorithm," Energy, Elsevier, vol. 306(C).
    2. Martin Bichler & Hans Ulrich Buhl & Johannes Knörr & Felipe Maldonado & Paul Schott & Stefan Waldherr & Martin Weibelzahl, 2022. "Electricity Markets in a Time of Change: A Call to Arms for Business Research," Schmalenbach Journal of Business Research, Springer, vol. 74(1), pages 77-102, March.
    3. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    4. Ju, Liwei & Yin, Zhe & Zhou, Qingqing & Li, Qiaochu & Wang, Peng & Tian, Wenxu & Li, Peng & Tan, Zhongfu, 2022. "Nearly-zero carbon optimal operation model and benefit allocation strategy for a novel virtual power plant using carbon capture, power-to-gas, and waste incineration power in rural areas," Applied Energy, Elsevier, vol. 310(C).
    5. Chen, Lei & Gao, Lingyun & Xing, Shuping & Chen, Zhicong & Wang, Weiwei, 2024. "Zero-carbon microgrid: Real-world cases, trends, challenges, and future research prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    6. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    7. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    8. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    9. Feng, Jie & Ran, Lun & Wang, Zhiyuan & Zhang, Mengling, 2024. "Optimal energy scheduling of virtual power plant integrating electric vehicles and energy storage systems under uncertainty," Energy, Elsevier, vol. 309(C).
    10. Fathy, Ahmed, 2023. "Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles," Applied Energy, Elsevier, vol. 334(C).
    11. Kaiss, Mateus & Wan, Yihao & Gebbran, Daniel & Vila, Clodomiro Unsihuay & Dragičević, Tomislav, 2025. "Review on Virtual Power Plants/Virtual Aggregators: Concepts, applications, prospects and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    12. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    13. Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    14. Lin, Wen-Ting & Chen, Guo & Zhou, Xiaojun, 2022. "Distributed carbon-aware energy trading of virtual power plant under denial of service attacks: A passivity-based neurodynamic approach," Energy, Elsevier, vol. 257(C).
    15. Speth, Daniel & Plötz, Patrick & Wietschel, Martin, 2025. "An optimal capacity-constrained fast charging network for battery electric trucks in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 193(C).
    16. Huang, Z.F. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2023. "Development of a novel grid-free district cooling system considering blockchain-based demand response management," Applied Energy, Elsevier, vol. 342(C).
    17. Eunsung Oh, 2022. "Fair Virtual Energy Storage System Operation for Smart Energy Communities," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    18. Ioanna Andreoulaki & Aikaterini Papapostolou & Vangelis Marinakis, 2024. "Evaluating the Barriers to Blockchain Adoption in the Energy Sector: A Multicriteria Approach Using the Analytical Hierarchy Process for Group Decision Making," Energies, MDPI, vol. 17(6), pages 1-27, March.
    19. Gourisetti, Sri Nikhil Gupta & Sebastian-Cardenas, D. Jonathan & Bhattarai, Bishnu & Wang, Peng & Widergren, Steve & Borkum, Mark & Randall, Alysha, 2021. "Blockchain smart contract reference framework and program logic architecture for transactive energy systems," Applied Energy, Elsevier, vol. 304(C).
    20. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0284030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.