IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2419-d1397004.html
   My bibliography  Save this article

A Stochastic Decision-Making Tool Suite for Distributed Energy Resources Integration in Energy Markets

Author

Listed:
  • Sergio Cantillo-Luna

    (Faculty of Engineering, Universidad Autónoma de Occidente, Cali 760030, Colombia)

  • Ricardo Moreno-Chuquen

    (Faculty of Engineering and Design, Universidad Icesi, Cali 760031, Colombia)

  • David Celeita

    (Faculty of Engineering, Universidad de la Sabana, Chía 111321, Colombia)

  • George J. Anders

    (Faculty of Electrical and Computer Engineering, Technical University of Lodz, 90-924 Lodz, Poland)

Abstract

Energy markets are crucial for integrating Distributed Energy Resources (DER) into modern power grids. However, this integration presents challenges due to the inherent variability and decentralized nature of DERs, as well as poorly adapted regulatory environments. This paper proposes a medium-term decision-making approach based on a comprehensive suite of computational tools for integrating DERs into Colombian energy markets. The proposed framework consists of modular tools that are aligned with the operation of a Commercial Virtual Power Plant (CVPP). The tools aim to optimize participation in bilateral contracts and short-term energy markets. They use forecasting, uncertainty management, and decision-making modules to create an optimal portfolio of DER assets. The suite’s effectiveness and applicability are demonstrated and analyzed through its implementation with heterogeneous DER assets across various operational scenarios.

Suggested Citation

  • Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George J. Anders, 2024. "A Stochastic Decision-Making Tool Suite for Distributed Energy Resources Integration in Energy Markets," Energies, MDPI, vol. 17(10), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2419-:d:1397004
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2419/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Qing & Wang, Hao & Wang, Taotao & Zhang, Shengli & Wu, Xiaoxiao & Wang, Hui, 2021. "Blockchain-based decentralized energy management platform for residential distributed energy resources in a virtual power plant," Applied Energy, Elsevier, vol. 294(C).
    2. Jiaqi Liu & Hongji Hu & Samson S. Yu & Hieu Trinh, 2023. "Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response," Energies, MDPI, vol. 16(9), pages 1-28, April.
    3. Shabanzadeh, Morteza & Sheikh-El-Eslami, Mohammad-Kazem & Haghifam, Mahmoud-Reza, 2016. "A medium-term coalition-forming model of heterogeneous DERs for a commercial virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 663-681.
    4. López González, Diana María & Garcia Rendon, John, 2022. "Opportunities and challenges of mainstreaming distributed energy resources towards the transition to more efficient and resilient energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Wu, Min & Xu, Jiazhu & Zeng, Linjun & Li, Chang & Liu, Yuxing & Yi, Yuqin & Wen, Ming & Jiang, Zhuohan, 2022. "Two-stage robust optimization model for park integrated energy system based on dynamic programming," Applied Energy, Elsevier, vol. 308(C).
    6. Michael L. Bynum & Gabriel A. Hackebeil & William E. Hart & Carl D. Laird & Bethany L. Nicholson & John D. Siirola & Jean-Paul Watson & David L. Woodruff, 2021. "Pyomo — Optimization Modeling in Python," Springer Optimization and Its Applications, Springer, edition 3, number 978-3-030-68928-5, December.
    7. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George Anders, 2023. "Deep and Machine Learning Models to Forecast Photovoltaic Power Generation," Energies, MDPI, vol. 16(10), pages 1-24, May.
    8. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    9. Shafiekhani, Morteza & Ahmadi, Abdollah & Homaee, Omid & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal bidding strategy of a renewable-based virtual power plant including wind and solar units and dispatchable loads," Energy, Elsevier, vol. 239(PD).
    10. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Karlson Hargroves & Benjamin James & Joshua Lane & Peter Newman, 2023. "The Role of Distributed Energy Resources and Associated Business Models in the Decentralised Energy Transition: A Review," Energies, MDPI, vol. 16(10), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yuzheng & Dong, Jun & Huang, Hexiang, 2024. "Optimal bidding strategy for the price-maker virtual power plant in the day-ahead market based on multi-agent twin delayed deep deterministic policy gradient algorithm," Energy, Elsevier, vol. 306(C).
    2. Alam, Khandoker Shahjahan & Kaif, A.M.A. Daiyan & Das, Sajal K., 2024. "A blockchain-based optimal peer-to-peer energy trading framework for decentralized energy management with in a virtual power plant: Lab scale studies and large scale proposal," Applied Energy, Elsevier, vol. 365(C).
    3. Songkai Wang & Rong Jia & Xiaoyu Shi & Chang Luo & Yuan An & Qiang Huang & Pengcheng Guo & Xueyan Wang & Xuewen Lei, 2022. "Research on Capacity Allocation Optimization of Commercial Virtual Power Plant (CVPP)," Energies, MDPI, vol. 15(4), pages 1-18, February.
    4. Jiaqi Liu & Hongji Hu & Samson S. Yu & Hieu Trinh, 2023. "Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response," Energies, MDPI, vol. 16(9), pages 1-28, April.
    5. Martin Bichler & Hans Ulrich Buhl & Johannes Knörr & Felipe Maldonado & Paul Schott & Stefan Waldherr & Martin Weibelzahl, 2022. "Electricity Markets in a Time of Change: A Call to Arms for Business Research," Schmalenbach Journal of Business Research, Springer, vol. 74(1), pages 77-102, March.
    6. Weigang Jin & Peihua Wang & Jiaxin Yuan, 2024. "Key Role and Optimization Dispatch Research of Technical Virtual Power Plants in the New Energy Era," Energies, MDPI, vol. 17(22), pages 1-24, November.
    7. Mostafa Darvishi & Mehrdad Tahmasebi & Ehsan Shokouhmand & Jagadeesh Pasupuleti & Pitshou Bokoro & Jwan Satei Raafat, 2023. "Optimal Operation of Sustainable Virtual Power Plant Considering the Amount of Emission in the Presence of Renewable Energy Sources and Demand Response," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    8. Huiru Zhao & Chao Zhang & Yihang Zhao & Xuejie Wang, 2022. "Low-Carbon Economic Dispatching of Multi-Energy Virtual Power Plant with Carbon Capture Unit Considering Uncertainty and Carbon Market," Energies, MDPI, vol. 15(19), pages 1-25, October.
    9. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    10. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    11. Cheng, Xiaoyuan & Yao, Ruiqiu & Postnikov, Andrey & Hu, Yukun & Varga, Liz, 2024. "Decentralized intelligent multi-party competitive aggregation framework for electricity prosumers," Applied Energy, Elsevier, vol. 373(C).
    12. Xie, Haonan & Ahmad, Tanveer & Zhang, Dongdong & Goh, Hui Hwang & Wu, Thomas, 2024. "Community-based virtual power plants’ technology and circular economy models in the energy sector: A Techno-economy study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    14. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    15. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    16. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    17. Rakshith Subramanya & Matti Yli-Ojanperä & Seppo Sierla & Taneli Hölttä & Jori Valtakari & Valeriy Vyatkin, 2021. "A Virtual Power Plant Solution for Aggregating Photovoltaic Systems and Other Distributed Energy Resources for Northern European Primary Frequency Reserves," Energies, MDPI, vol. 14(5), pages 1-23, February.
    18. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions," Energies, MDPI, vol. 17(16), pages 1-23, August.
    19. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    20. Lau, Jat-Syu & Jiang, Yihuo & Li, Ziyuan & Qian, Qian, 2023. "Stochastic trading of storage systems in short term electricity markets considering intraday demand response market," Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2419-:d:1397004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.