IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006263.html
   My bibliography  Save this article

A blockchain-based optimal peer-to-peer energy trading framework for decentralized energy management with in a virtual power plant: Lab scale studies and large scale proposal

Author

Listed:
  • Alam, Khandoker Shahjahan
  • Kaif, A.M.A. Daiyan
  • Das, Sajal K.

Abstract

The integration of distributed energy resources (DERs) such as wind, solar, batteries, etc. into the grid presents opportunities as well as challenges with regard to efficient coordination and trading. Virtual power plants (VPPs) have emerged as an important paradigm for aggregating and managing numerous DERs. This paper proposes a decentralized blockchain-based peer-to-peer (P2P) multilayer energy trading framework to facilitate optimized coordination of DERs within a VPP context. A control center, prosumers, and service operators constitute the model’s multi-layered architecture. Profits from feed-in tariffs, ancillary services, and P2P sales are optimized for revenue while expenses are minimized using a mixed-integer linear programming formulation. Smart contracts enable prosumers to trade energy units in the Ethereum blockchain with ease via a participatory web platform. The effectiveness of the framework in synchronizing power supply and demand within the VPP by coordinating the charging and discharging of storage systems in accordance with consumption patterns is demonstrated through performance evaluation. In contrast to conventional centralized architectures, the proposed framework utilized decentralized architecture efficiently consolidates and optimizes distributed energy resources (DERs) to improve grid stability and renewable energy utilization.

Suggested Citation

  • Alam, Khandoker Shahjahan & Kaif, A.M.A. Daiyan & Das, Sajal K., 2024. "A blockchain-based optimal peer-to-peer energy trading framework for decentralized energy management with in a virtual power plant: Lab scale studies and large scale proposal," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006263
    DOI: 10.1016/j.apenergy.2024.123243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.