IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0339606.html

AI-enhanced multi-timescale optimization strategy for virtual power plants: Advancing losad forecasting and dynamic demand response integration

Author

Listed:
  • Guojun Xu
  • Guangjie Yang
  • Jie Bao
  • Huibo Feng
  • Feifei Zhang
  • Hua Zheng

Abstract

The integration of renewable energy sources (RESs) introduces significant challenges related to uncertainty and intermittency in power grids. While Artificial Intelligence (AI) offers promising solutions for Virtual Power Plants (VPP) optimization, existing approaches often treat load forecasting, system dispatch, and demand response as loosely coupled components, limiting their ability to holistically manage these deep uncertainties. To address this, we propose a novel AI-enhanced multi-timescale optimization strategy that creates a synergistic, integrated framework. Methodologically, the approach begins with an attention-augmented Bidirectional Long Short-Term Memory (BiLSTM) model that generates high-fidelity spatiotemporal load forecasts, providing crucial spatial-aware inputs often overlooked by traditional models. These enhanced forecasts are then leveraged by a Model Predictive Control (MPC) strategy for more robust and proactive day-ahead and intraday dispatch. Crucially, the framework integrates a dynamic demand response (DDR) mechanism that is directly coupled with real-time MPC outputs, ensuring that load flexibility is mobilized based on immediate system needs rather than static signals alone. Simulations, driven by real-world operational data, confirm that this integrated strategy not only reduces operational costs and improves forecasting accuracy but also establishes a more resilient and adaptive VPP operational paradigm compared to prior AI-based methods.

Suggested Citation

  • Guojun Xu & Guangjie Yang & Jie Bao & Huibo Feng & Feifei Zhang & Hua Zheng, 2026. "AI-enhanced multi-timescale optimization strategy for virtual power plants: Advancing losad forecasting and dynamic demand response integration," PLOS ONE, Public Library of Science, vol. 21(1), pages 1-28, January.
  • Handle: RePEc:plo:pone00:0339606
    DOI: 10.1371/journal.pone.0339606
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0339606
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0339606&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0339606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    2. Jinpeng Yang, 2023. "Transaction decision optimization of new electricity market based on virtual power plant participation and Stackelberg game," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    2. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    3. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    4. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    5. Wang, Ying & Li, Hongmin & Jahanger, Atif & Li, Qiwei & Wang, Biao & Balsalobre-Lorente, Daniel, 2024. "A novel ensemble electricity load forecasting system based on a decomposition-selection-optimization strategy," Energy, Elsevier, vol. 312(C).
    6. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    7. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    8. Yao, Xianshuang & Guo, Kangshuai & Lei, Jianqi & Li, Xuanyu, 2024. "Fully connected multi-reservoir echo state networks for wind power prediction," Energy, Elsevier, vol. 312(C).
    9. Rathore, Abhijeet & Gupta, Priya & Sharma, Raksha & Singh, Rhythm, 2025. "Day ahead solar forecast using long short term memory network augmented with Fast Fourier transform-assisted decomposition technique," Renewable Energy, Elsevier, vol. 247(C).
    10. Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
    11. Xiang Ying & Keke Zhao & Zhiqiang Liu & Jie Gao & Dongxiao He & Xuewei Li & Wei Xiong, 2022. "Wind Speed Prediction via Collaborative Filtering on Virtual Edge Expanding Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, June.
    12. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    13. Ignatev, Evgenii & Deriugina, Galina & Suslov, Konstantin & Balaban, Georgiana, 2025. "Development of a hybrid model for medium-term wind farm power output forecasting," Renewable Energy, Elsevier, vol. 249(C).
    14. Wang, Han & Yan, Jie & Han, Shuang & Liu, Yongqian, 2020. "Switching strategy of the low wind speed wind turbine based on real-time wind process prediction for the integration of wind power and EVs," Renewable Energy, Elsevier, vol. 157(C), pages 256-272.
    15. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    16. Zhang, Haipeng & Wang, Jianzhou & Qian, Yuansheng & Li, Qiwei, 2024. "Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM," Energy, Elsevier, vol. 294(C).
    17. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    18. Bashir, Tasarruf & Wang, Huifang & Tahir, Mustafa & Zhang, Yixiang, 2025. "Wind and solar power forecasting based on hybrid CNN-ABiLSTM, CNN-transformer-MLP models," Renewable Energy, Elsevier, vol. 239(C).
    19. Wang, Jianzhou & Wang, Shuai & Li, Zhiwu, 2021. "Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression," Renewable Energy, Elsevier, vol. 179(C), pages 1246-1261.
    20. Qingliang Zhao & Xiaobin Feng & Liwen Zhang & Yiduo Wang, 2023. "Research on Short-Term Passenger Flow Prediction of LSTM Rail Transit Based on Wavelet Denoising," Mathematics, MDPI, vol. 11(19), pages 1-16, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0339606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.