IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v79y2017icp1303-1313.html
   My bibliography  Save this article

The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research

Author

Listed:
  • Wesseling, J.H.
  • Lechtenböhmer, S.
  • Åhman, M.
  • Nilsson, L.J.
  • Worrell, E.
  • Coenen, L.

Abstract

Energy-intensive processing industries (EPIs) produce iron and steel, aluminum, chemicals, cement, glass, and paper and pulp and are responsible for a large share of global greenhouse gas emissions. To meet 2050 emission targets, an accelerated transition towards deep decarbonization is required in these industries. Insights from sociotechnical and innovation systems perspectives are needed to better understand how to steer and facilitate this transition process. The transitions literature has so far, however, not featured EPIs. This paper positions EPIs within the transitions literature by characterizing their sociotechnical and innovation systems in terms of industry structure, innovation strategies, networks, markets and governmental interventions. We subsequently explore how these characteristics may influence the transition to deep decarbonization and identify gaps in the literature from which we formulate an agenda for further transitions research on EPIs and consider policy implications. Furthering this research field would not only enrich discussions on policy for achieving deep decarbonization, but would also develop transitions theory since the distinctive EPI characteristics are likely to yield new patterns in transition dynamics.

Suggested Citation

  • Wesseling, J.H. & Lechtenböhmer, S. & Åhman, M. & Nilsson, L.J. & Worrell, E. & Coenen, L., 2017. "The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1303-1313.
  • Handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:1303-1313
    DOI: 10.1016/j.rser.2017.05.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gulbrandsen, Lars H. & Stenqvist, Christian, 2013. "The limited effect of EU emissions trading on corporate climate strategies: Comparison of a Swedish and a Norwegian pulp and paper company," Energy Policy, Elsevier, vol. 56(C), pages 516-525.
    2. Wintour, Nora., 2015. "The glass industry : recent trends and changes in working conditions and employment relations," ILO Working Papers 994885063402676, International Labour Organization.
    3. Napp, T.A. & Gambhir, A. & Hills, T.P. & Florin, N. & Fennell, P.S, 2014. "A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 616-640.
    4. Nemet, Gregory F. & Zipperer, Vera & Kraus, Martina, 2018. "The valley of death, the technology pork barrel, and public support for large demonstration projects," Energy Policy, Elsevier, vol. 119(C), pages 154-167.
    5. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    6. Anna J. Wieczorek & Marko P. Hekkert, 2012. "Corrigendum to 'Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars'," Science and Public Policy, Oxford University Press, vol. 39(6), pages 842-842, December.
    7. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    8. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    9. Sharon Oster, 1982. "The Diffusion of Innovation among Steel Firms: The Basic Oxygen Furnace," Bell Journal of Economics, The RAND Corporation, vol. 13(1), pages 45-56, Spring.
    10. Raven, Rob, 2007. "Niche accumulation and hybridisation strategies in transition processes towards a sustainable energy system: An assessment of differences and pitfalls," Energy Policy, Elsevier, vol. 35(4), pages 2390-2400, April.
    11. Wells, Peter & Nieuwenhuis, Paul, 2012. "Transition failure: Understanding continuity in the automotive industry," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1681-1692.
    12. Christophe Rynikiewicz, 2008. "The climate change challenge and transitions for radical changes in the European steel industry," Post-Print halshs-00005052, HAL.
    13. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    14. Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
    15. Sovacool, Benjamin K., 2017. "Contestation, contingency, and justice in the Nordic low-carbon energy transition," Energy Policy, Elsevier, vol. 102(C), pages 569-582.
    16. Fais, Birgit & Sabio, Nagore & Strachan, Neil, 2016. "The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets," Applied Energy, Elsevier, vol. 162(C), pages 699-712.
    17. Tran, Martino & Banister, David & Bishop, Justin D.K. & McCulloch, Malcolm D., 2013. "Simulating early adoption of alternative fuel vehicles for sustainability," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 865-875.
    18. Amandine Denis-Ryan & Chris Bataille & Frank Jotzo, 2016. "Managing carbon-intensive materials in a decarbonizing world without a global price on carbon," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 110-128, June.
    19. Ann-Kristin Bergquist & Kristina S�derholm, 2015. "Transition to greener pulp: regulation, industry responses and path dependency," Business History, Taylor & Francis Journals, vol. 57(6), pages 862-884, September.
    20. Stefan Lechtenböhmer & Clemens Schneider & María Yetano Roche & Samuel Höller, 2015. "Re-Industrialisation and Low-Carbon Economy—Can They Go Together? Results from Stakeholder-Based Scenarios for Energy-Intensive Industries in the German State of North Rhine Westphalia," Energies, MDPI, Open Access Journal, vol. 8(10), pages 1-26, October.
    21. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    22. Paula Kivimaa & Florian Kern, 2015. "Creative Destruction or Mere Niche Creation? Innovation Policy Mixes for Sustainability Transitions," SPRU Working Paper Series 2015-02, SPRU - Science Policy Research Unit, University of Sussex Business School.
    23. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    24. Worrell, Ernst & Biermans, Gijs, 2005. "Move over! Stock turnover, retrofit and industrial energy efficiency," Energy Policy, Elsevier, vol. 33(7), pages 949-962, May.
    25. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    26. Anna J. Wieczorek & Marko P. Hekkert, 2012. "Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars," Science and Public Policy, Oxford University Press, vol. 39(1), pages 74-87, February.
    27. Crompton, Paul & Lesourd, Jean-Baptiste, 2008. "Economies of scale in global iron-making," Resources Policy, Elsevier, vol. 33(2), pages 74-82, June.
    28. Saygin, D. & Worrell, E. & Patel, M.K. & Gielen, D.J., 2011. "Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries," Energy, Elsevier, vol. 36(11), pages 6661-6673.
    29. Liliana B. Andonova, 2010. "Public-Private Partnerships for the Earth: Politics and Patterns of Hybrid Authority in the Multilateral System," Global Environmental Politics, MIT Press, vol. 10(2), pages 25-53, May.
    30. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, Open Access Journal, vol. 13(16), pages 1-40, August.
    3. Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
    4. Lim, Juin Yau & How, Bing Shen & Rhee, Gahee & Hwangbo, Soonho & Yoo, Chang Kyoo, 2020. "Transitioning of localized renewable energy system towards sustainable hydrogen development planning: P-graph approach," Applied Energy, Elsevier, vol. 263(C).
    5. Hellsmark, Hans & Hansen, Teis, 2020. "A new dawn for (oil) incumbents within the bioeconomy? Trade-offs and lessons for policy," Energy Policy, Elsevier, vol. 145(C).
    6. Qingjian Zhao & Zuomin Wen & Anne Toppinen, 2018. "Constructing the Embodied Carbon Flows and Emissions Landscape from the Perspective of Supply Chain," Sustainability, MDPI, Open Access Journal, vol. 10(11), pages 1-17, October.
    7. Jacek Brożyna & Wadim Strielkowski & Alena Fomina & Natalya Nikitina, 2020. "Renewable Energy and EU 2020 Target for Energy Efficiency in the Czech Republic and Slovakia," Energies, MDPI, Open Access Journal, vol. 13(4), pages 1-20, February.
    8. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Wanke, Peter Fernandes & Chiappetta Jabbour, Charbel José & Moreira Antunes, Jorge Junio & Lopes de Sousa Jabbour, Ana Beatriz & Roubaud, David & Sobreiro, Vinicius Amorim & Santibanez Gonzalez‬, Erne, 2021. "An original information entropy-based quantitative evaluation model for low-carbon operations in an emerging market," International Journal of Production Economics, Elsevier, vol. 234(C).
    11. Kaplan, P. Ozge & Witt, Jonathan W., 2019. "What is the role of distributed energy resources under scenarios of greenhouse gas reductions? A specific focus on combined heat and power systems in the industrial and commercial sectors," Applied Energy, Elsevier, vol. 235(C), pages 83-94.
    12. Gillian Foster, 2019. "Low-Carbon Futures for Bioethylene in the United States," Energies, MDPI, Open Access Journal, vol. 12(10), pages 1-20, May.
    13. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, Open Access Journal, vol. 13(19), pages 1-34, September.
    14. Mura, Matteo & Longo, Mariolina & Toschi, Laura & Zanni, Sara & Visani, Franco & Bianconcini, Silvia, 2021. "The role of geographical scales in sustainability transitions: An empirical investigation of the European industrial context," Ecological Economics, Elsevier, vol. 183(C).
    15. Ayodele Asekomeh & Obindah Gershon & Smith I. Azubuike, 2021. "Optimally Clocking the Low Carbon Energy Mile to Achieve the Sustainable Development Goals: Evidence from Dundee’s Electric Vehicle Strategy," Energies, MDPI, Open Access Journal, vol. 14(4), pages 1-23, February.
    16. Alberto Gianoli & Felipe Bravo, 2020. "Carbon Tax, Carbon Leakage and the Theory of Induced Innovation in the Decarbonisation of Industrial Processes: The Case of the Port of Rotterdam," Sustainability, MDPI, Open Access Journal, vol. 12(18), pages 1-23, September.
    17. Marta Daroń & Monika Górska, 2019. "Management Premises and Barriers in the Metal Industry in Poland in the Context of Innovative Activity," Sustainability, MDPI, Open Access Journal, vol. 11(23), pages 1-18, November.
    18. Panagiotis Fragkos & Kostas Fragkiadakis & Leonidas Paroussos, 2021. "Reducing the Decarbonisation Cost Burden for EU Energy-Intensive Industries," Energies, MDPI, Open Access Journal, vol. 14(1), pages 1-23, January.
    19. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Rehfeldt, M. & Worrell, E. & Eichhammer, W. & Fleiter, T., 2020. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    21. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    22. McMillan, Colin A. & Ruth, Mark, 2019. "Using facility-level emissions data to estimate the technical potential of alternative thermal sources to meet industrial heat demand," Applied Energy, Elsevier, vol. 239(C), pages 1077-1090.
    23. Arens, Marlene & Åhman, Max & Vogl, Valentin, 2021. "Which countries are prepared to green their coal-based steel industry with electricity? - Reviewing climate and energy policy as well as the implementation of renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    24. Oscar Svensson & Jamil Khan & Roger Hildingsson, 2020. "Studying Industrial Decarbonisation: Developing an Interdisciplinary Understanding of the Conditions for Transformation in Energy-Intensive Natural Resource-Based Industry," Sustainability, MDPI, Open Access Journal, vol. 12(5), pages 1-21, March.
    25. Griffin, Paul W. & Hammond, Geoffrey P., 2019. "Industrial energy use and carbon emissions reduction in the iron and steel sector: A UK perspective," Applied Energy, Elsevier, vol. 249(C), pages 109-125.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    2. Walrave, Bob & Talmar, Madis & Podoynitsyna, Ksenia S. & Romme, A. Georges L. & Verbong, Geert P.J., 2018. "A multi-level perspective on innovation ecosystems for path-breaking innovation," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 103-113.
    3. Walrave, Bob & Raven, Rob, 2016. "Modelling the dynamics of technological innovation systems," Research Policy, Elsevier, vol. 45(9), pages 1833-1844.
    4. Rogge, Karoline S. & Pfluger, Benjamin & Geels, Frank W., 2020. "Transformative policy mixes in socio-technical scenarios: The case of the low-carbon transition of the German electricity system (2010–2050)," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    5. Geddes, Anna & Schmidt, Tobias S., 2020. "Integrating finance into the multi-level perspective: Technology niche-finance regime interactions and financial policy interventions," Research Policy, Elsevier, vol. 49(6).
    6. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    7. Raven, Rob & Walrave, Bob, 2020. "Overcoming transformational failures through policy mixes in the dynamics of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    8. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    9. Dahesh, Mehran Badin & Tabarsa, Gholamali & Zandieh, Mostafa & Hamidizadeh, Mohammadreza, 2020. "Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis," Technology in Society, Elsevier, vol. 63(C).
    10. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Rogge, Karoline S. & Reichardt, Kristin, 2016. "Policy mixes for sustainability transitions: An extended concept and framework for analysis," Research Policy, Elsevier, vol. 45(8), pages 1620-1635.
    12. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    13. Jain, Sanjay, 2020. "Fumbling to the future? Socio-technical regime change in the recorded music industry," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    14. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.
    15. Hilde Nykamp, 2020. "Policy Mix for a Transition to Sustainability: Green Buildings in Norway," Sustainability, MDPI, Open Access Journal, vol. 12(2), pages 1-17, January.
    16. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    17. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    18. Kivimaa, Paula & Boon, Wouter & Hyysalo, Sampsa & Klerkx, Laurens, 2019. "Towards a typology of intermediaries in sustainability transitions: A systematic review and a research agenda," Research Policy, Elsevier, vol. 48(4), pages 1062-1075.
    19. Wesseling, Joeri H. & Bidmon, Christina & Bohnsack, René, 2020. "Business model design spaces in socio-technical transitions: The case of electric driving in the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    20. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:1303-1313. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.