IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v45y2016i9p1833-1844.html
   My bibliography  Save this article

Modelling the dynamics of technological innovation systems

Author

Listed:
  • Walrave, Bob
  • Raven, Rob

Abstract

Currently there is no formal model describing the dynamics of technological innovation systems. This paper develops a system dynamics model that integrates the concept of ‘motors of innovation’, following the literature on emerging technological innovation systems, with the notion of ‘transition pathways’ that was developed as part of the multi-level-framework thinking. As such, the main contribution of this paper is a cross-over of two key-frameworks into a system dynamics model that can serve as underpinning for future research. The model’s behaviour is illustrated by means of analyses of TIS dynamics in the context of different transition pathways, under different resourcing conditions. The paper also provides a future research agenda, pursuable by means of experimentation and/or further development of the presented model.

Suggested Citation

  • Walrave, Bob & Raven, Rob, 2016. "Modelling the dynamics of technological innovation systems," Research Policy, Elsevier, vol. 45(9), pages 1833-1844.
  • Handle: RePEc:eee:respol:v:45:y:2016:i:9:p:1833-1844
    DOI: 10.1016/j.respol.2016.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733316300853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2016.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, Adrian & Stirling, Andy & Berkhout, Frans, 2005. "The governance of sustainable socio-technical transitions," Research Policy, Elsevier, vol. 34(10), pages 1491-1510, December.
    2. Weber, K. Matthias & Rohracher, Harald, 2012. "Legitimizing research, technology and innovation policies for transformative change," Research Policy, Elsevier, vol. 41(6), pages 1037-1047.
    3. Smith, Adrian & Raven, Rob, 2012. "What is protective space? Reconsidering niches in transitions to sustainability," Research Policy, Elsevier, vol. 41(6), pages 1025-1036.
    4. Bob Walrave & Kim E. van Oorschot & A. Georges L. Romme, 2011. "Getting Trapped in the Suppression of Exploration: A Simulation Model," Journal of Management Studies, Wiley Blackwell, vol. 48(8), pages 1727-1751, December.
    5. Köhler, Jonathan & Whitmarsh, Lorraine & Nykvist, Björn & Schilperoord, Michel & Bergman, Noam & Haxeltine, Alex, 2009. "A transitions model for sustainable mobility," Ecological Economics, Elsevier, vol. 68(12), pages 2985-2995, October.
    6. Anna J. Wieczorek & Marko P. Hekkert, 2012. "Corrigendum to 'Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars'," Science and Public Policy, Oxford University Press, vol. 39(6), pages 842-842, December.
    7. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    8. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    9. Johan Schot & Frank Geels, 2007. "Niches in evolutionary theories of technical change," Journal of Evolutionary Economics, Springer, vol. 17(5), pages 605-622, October.
    10. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    11. ., 1998. "Technological Change," Chapters, in: Heinz D. Kurz & Neri Salvadori (ed.), The Elgar Companion to Classical Economics, volume 0, chapter 127, Edward Elgar Publishing.
    12. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    13. Roald A.A. Suurs & Marko P. Hekkert & Ruud E.H.M. Smits, 2009. "Understanding the build-up of a Technological Innovation System around Hydrogen and Fuel Cell Technologies," Innovation Studies Utrecht (ISU) working paper series 09-10, Utrecht University, Department of Innovation Studies, revised Jun 2009.
    14. Geels, Frank W., 2010. "Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective," Research Policy, Elsevier, vol. 39(4), pages 495-510, May.
    15. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    16. Ron Adner & Daniel Snow, 2010. "Old technology responses to new technology threats: demand heterogeneity and technology retreats," Industrial and Corporate Change, Oxford University Press, vol. 19(5), pages 1655-1675, October.
    17. Lopolito, A. & Morone, P. & Taylor, R., 2013. "Emerging innovation niches: An agent based model," Research Policy, Elsevier, vol. 42(6), pages 1225-1238.
    18. Nicola De Liso & Giovanni Filatrella, 2008. "On Technology Competition: A Formal Analysis Of The 'Sailing-Ship Effect'," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 17(6), pages 593-610.
    19. Noam Bergman & Alex Haxeltine & Lorraine Whitmarsh & Jonathan Köhler & Michel Schilperoord & Jan Rotmans, 2008. "Modelling Socio-Technical Transition Patterns and Pathways," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(3), pages 1-7.
    20. Garud, Raghu & Gehman, Joel, 2012. "Metatheoretical perspectives on sustainability journeys: Evolutionary, relational and durational," Research Policy, Elsevier, vol. 41(6), pages 980-995.
    21. Fernando F. Suarez & Rogelio Oliva, 2005. "Environmental change and organizational transformation," Industrial and Corporate Change, Oxford University Press, vol. 14(6), pages 1017-1041, December.
    22. Suurs, Roald A.A. & Hekkert, Marko P. & Kieboom, Sander & Smits, Ruud E.H.M., 2010. "Understanding the formative stage of technological innovation system development: The case of natural gas as an automotive fuel," Energy Policy, Elsevier, vol. 38(1), pages 419-431, January.
    23. Nill, Jan & Kemp, Ren, 2009. "Evolutionary approaches for sustainable innovation policies: From niche to paradigm?," Research Policy, Elsevier, vol. 38(4), pages 668-680, May.
    24. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press, vol. 13(5), pages 815-849, October.
    25. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    26. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    27. Anna J. Wieczorek & Marko P. Hekkert, 2012. "Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars," Science and Public Policy, Oxford University Press, vol. 39(1), pages 74-87, February.
    28. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pieter Valkering & Gönenç Yücel & Ernst Gebetsroither-Geringer & Karin Markvica & Erika Meynaerts & Niki Frantzeskaki, 2017. "Accelerating Transition Dynamics in City Regions: A Qualitative Modeling Perspective," Sustainability, MDPI, Open Access Journal, vol. 9(7), pages 1-20, July.
    2. Borges, Cosme P. & Sobczak, Jéssica C. & Silberg, Timothy R. & Uriona-Maldonado, Mauricio & Vaz, Caroline R., 2021. "A systems modeling approach to estimate biogas potential from biomass sources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Jenson, Ian & Doyle, Richard & Miles, Morgan P., 2020. "An entrepreneurial marketing process perspective of the role of intermediaries in producing innovation outcomes," Journal of Business Research, Elsevier, vol. 112(C), pages 291-299.
    4. Köhler, Jonathan & Raven, Rob & Walrave, Bob, 2020. "Advancing the analysis of technological innovation systems dynamics: Introduction to the special issue," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    5. G. Filatrella & N. De Liso, 2019. "Predicting one type of technological motion? A nonlinear map to study the 'sailing-ship' effect," Papers 1912.11250, arXiv.org.
    6. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    7. Kieft, Alco & Harmsen, Robert & Hekkert, Marko P., 2020. "Toward ranking interventions for Technological Innovation Systems via the concept of Leverage Points," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    8. Raven, Rob & Walrave, Bob, 2020. "Overcoming transformational failures through policy mixes in the dynamics of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    9. Zolfagharian, Mohammadreza & Walrave, Bob & Raven, Rob & Romme, A. Georges L., 2019. "Studying transitions: Past, present, and future," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    10. Jan H. Miedema & Henny J. Van der Windt & Henri C. Moll, 2018. "Opportunities and Barriers for Biomass Gasification for Green Gas in the Dutch Residential Sector," Energies, MDPI, Open Access Journal, vol. 11(11), pages 1-20, November.
    11. Guzzo, Daniel & Rodrigues, Vinicius Picanço & Mascarenhas, Janaina, 2021. "A systems representation of the Circular Economy: Transition scenarios in the electrical and electronic equipment (EEE) industry," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    12. Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    13. Geddes, Anna & Schmidt, Tobias S., 2020. "Integrating finance into the multi-level perspective: Technology niche-finance regime interactions and financial policy interventions," Research Policy, Elsevier, vol. 49(6).
    14. Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, Open Access Journal, vol. 13(1), pages 1-23, December.
    15. Zhai, Xueqi & An, Yunfei, 2021. "The relationship between technological innovation and green transformation efficiency in China: An empirical analysis using spatial panel data," Technology in Society, Elsevier, vol. 64(C).
    16. Haley, Brendan, 2018. "Integrating structural tensions into technological innovation systems analysis: Application to the case of transmission interconnections and renewable electricity in Nova Scotia, Canada," Research Policy, Elsevier, vol. 47(6), pages 1147-1160.
    17. Alessandro Fiorini, 2016. "Technical efficiency in a technological innovation system perspective: The case of bioenergy technologies R&D resources mobilisation in a sample from EU-28," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2016(2), pages 107-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    2. Walrave, Bob & Talmar, Madis & Podoynitsyna, Ksenia S. & Romme, A. Georges L. & Verbong, Geert P.J., 2018. "A multi-level perspective on innovation ecosystems for path-breaking innovation," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 103-113.
    3. Garud, Raghu & Gehman, Joel, 2012. "Metatheoretical perspectives on sustainability journeys: Evolutionary, relational and durational," Research Policy, Elsevier, vol. 41(6), pages 980-995.
    4. Raven, Rob & Walrave, Bob, 2020. "Overcoming transformational failures through policy mixes in the dynamics of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    5. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.
    6. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    7. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    8. Pesch, Udo, 2015. "Tracing discursive space: Agency and change in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 379-388.
    9. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    10. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    11. Svensson, Oscar & Nikoleris, Alexandra, 2018. "Structure reconsidered: Towards new foundations of explanatory transitions theory," Research Policy, Elsevier, vol. 47(2), pages 462-473.
    12. Coenen, Lars & Benneworth, Paul & Truffer, Bernhard, 2012. "Toward a spatial perspective on sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 968-979.
    13. Manning, Stephan & Reinecke, Juliane, 2016. "A modular governance architecture in-the-making: How transnational standard-setters govern sustainability transitions," Research Policy, Elsevier, vol. 45(3), pages 618-633.
    14. Sorrell, Steve, 2018. "Explaining sociotechnical transitions: A critical realist perspective," Research Policy, Elsevier, vol. 47(7), pages 1267-1282.
    15. Smith, Adrian & Raven, Rob, 2012. "What is protective space? Reconsidering niches in transitions to sustainability," Research Policy, Elsevier, vol. 41(6), pages 1025-1036.
    16. Zolfagharian, Mohammadreza & Walrave, Bob & Raven, Rob & Romme, A. Georges L., 2019. "Studying transitions: Past, present, and future," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    17. Dahesh, Mehran Badin & Tabarsa, Gholamali & Zandieh, Mostafa & Hamidizadeh, Mohammadreza, 2020. "Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis," Technology in Society, Elsevier, vol. 63(C).
    18. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    19. Fuenfschilling, Lea & Truffer, Bernhard, 2014. "The structuration of socio-technical regimes—Conceptual foundations from institutional theory," Research Policy, Elsevier, vol. 43(4), pages 772-791.
    20. Marletto, Gerardo, 2014. "Car and the city: Socio-technical transition pathways to 2030," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 164-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:45:y:2016:i:9:p:1833-1844. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/respol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.