IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v33y2025i2p1700-1713.html
   My bibliography  Save this article

Decoupling of environmental impacts in the iron and steel sector is still needed beyond emissions

Author

Listed:
  • Chaohui Li
  • Prajal Pradhan

Abstract

The iron and steel (IAS) sector forms a critical foundation of the global economy, and the successful eco‐economic decoupling of this sector has been a focus of academic inquiry. However, existing literature in decoupling analysis often adopts a “carbon tunnel vision,” that is, concentrating on carbon alone while neglecting a broader array of environmental consequences. Here, we conduct multi‐footprint accounting for the IAS sector from 2000 to 2022 for carbon, energy, water, and particulate matter dimensions, examining decoupling patterns across different regions and various footprint types. Contrary to existing literature showing the successful decoupling of the IAS sector's environmental impact with economic growth, our study highlights that the decoupling trend is only observed in carbon footprints. We find that the carbon intensity has experienced a substantial decrease in the post‐2016 period, effectively counterbalancing the growth induced by increased demand. Such a pattern is unobserved for other footprint types. This suggests that while carbon has decoupled, other environmental impacts, such as water use and particulate matter, remain closely linked to the economic activity in this sector. These findings highlight a need for achieving sustainability on a diverse scale beyond decarbonizing the IAS sector. A shift away from the “carbon tunnel vision” in scholarly inquiry and public attention is essential, as it may hinder achieving diverse sustainability goals.

Suggested Citation

  • Chaohui Li & Prajal Pradhan, 2025. "Decoupling of environmental impacts in the iron and steel sector is still needed beyond emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(2), pages 1700-1713, April.
  • Handle: RePEc:wly:sustdv:v:33:y:2025:i:2:p:1700-1713
    DOI: 10.1002/sd.3204
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.3204
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.3204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lukas Hermwille & Stefan Lechtenböhmer & Max Åhman & Harro Asselt & Chris Bataille & Stefan Kronshage & Annika Tönjes & Manfred Fischedick & Sebastian Oberthür & Amit Garg & Catherine Hall & Patrick J, 2022. "A climate club to decarbonize the global steel industry," Nature Climate Change, Nature, vol. 12(6), pages 494-496, June.
    2. Wu, X.D. & Guo, J.L. & Han, M.Y. & Chen, G.Q., 2018. "An overview of arable land use for the world economy: From source to sink via the global supply chain," Land Use Policy, Elsevier, vol. 76(C), pages 201-214.
    3. Zhifu Mi & Jiali Zheng & Jing Meng & Jiamin Ou & Klaus Hubacek & Zhu Liu & D’Maris Coffman & Nicholas Stern & Sai Liang & Yi-Ming Wei, 2020. "Economic development and converging household carbon footprints in China," Nature Sustainability, Nature, vol. 3(7), pages 529-537, July.
    4. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 522-528, June.
    5. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    6. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    7. Andreoni, James & Levinson, Arik, 2001. "The simple analytics of the environmental Kuznets curve," Journal of Public Economics, Elsevier, vol. 80(2), pages 269-286, May.
    8. Alcantara, Vicent & Duarte, Rosa, 2004. "Comparison of energy intensities in European Union countries. Results of a structural decomposition analysis," Energy Policy, Elsevier, vol. 32(2), pages 177-189, January.
    9. Jan Weinzettel & Jan Kovanda, 2011. "Structural Decomposition Analysis of Raw Material Consumption," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 893-907, December.
    10. Livia Cabernard & Stephan Pfister & Christopher Oberschelp & Stefanie Hellweg, 2022. "Growing environmental footprint of plastics driven by coal combustion," Nature Sustainability, Nature, vol. 5(2), pages 139-148, February.
    11. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    12. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Synergy of air pollutants and greenhouse gas emissions of Chinese industries: A critical assessment of energy models," Energy, Elsevier, vol. 93(P2), pages 2436-2450.
    13. Klaus Hubacek & Giovanni Baiocchi & Kuishuang Feng & Anand Patwardhan, 2017. "Poverty eradication in a carbon constrained world," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    14. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    15. Cole, M.A. & Rayner, A.J. & Bates, J.M., 1997. "The environmental Kuznets curve: an empirical analysis," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 401-416, November.
    16. Stefan Bringezu & Martin Distelkamp & Christian Lutz & Florian Wimmer & Rüdiger Schaldach & Klaus Josef Hennenberg & Hannes Böttcher & Vincent Egenolf, 2021. "Environmental and socioeconomic footprints of the German bioeconomy," Nature Sustainability, Nature, vol. 4(9), pages 775-783, September.
    17. Ren, Ming & Lu, Pantao & Liu, Xiaorui & Hossain, M.S. & Fang, Yanru & Hanaoka, Tatsuya & O'Gallachoir, Brian & Glynn, James & Dai, Hancheng, 2021. "Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality," Applied Energy, Elsevier, vol. 298(C).
    18. Lukas Hermwille & Stefan Lechtenböhmer & Max Åhman & Harro Asselt & Chris Bataille & Stefan Kronshage & Annika Tönjes & Manfred Fischedick & Sebastian Oberthür & Amit Garg & Catherine Hall & Patrick J, 2022. "Author Correction: A climate club to decarbonize the global steel industry," Nature Climate Change, Nature, vol. 12(11), pages 1068-1068, November.
    19. Tianyang Lei & Daoping Wang & Xiang Yu & Shijun Ma & Weichen Zhao & Can Cui & Jing Meng & Shu Tao & Dabo Guan, 2023. "Global iron and steel plant CO2 emissions and carbon-neutrality pathways," Nature, Nature, vol. 622(7983), pages 514-520, October.
    20. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    21. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    22. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    23. Chen, B. & Li, J.S. & Wu, X.F. & Han, M.Y. & Zeng, L. & Li, Z. & Chen, G.Q., 2018. "Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis," Applied Energy, Elsevier, vol. 210(C), pages 98-107.
    24. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    25. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "Author Correction: The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 544-544, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Béchir Ben Lahouel & Younes Ben Zaied & Guo-liang Yang & Maria-Giuseppina Bruna & Yaoyao Song, 2022. "A non-parametric decomposition of the environmental performance-income relationship: evidence from a non-linear model," Annals of Operations Research, Springer, vol. 313(1), pages 525-558, June.
    2. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    3. Pascalau, Razvan & Qirjo, Dhimitri, 2017. "TTIP and the Environmental Kuznets Curve," MPRA Paper 80192, University Library of Munich, Germany.
    4. Savona, Maria & Ciarli, Tommaso, 2019. "Structural Changes and Sustainability. A Selected Review of the Empirical Evidence," Ecological Economics, Elsevier, vol. 159(C), pages 244-260.
    5. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    6. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    7. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    8. Song, Yi & Huang, Jianbai & Zhang, Yijun & Wang, Zhiping, 2019. "Drivers of metal consumption in China: An input-output structural decomposition analysis," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    9. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    10. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2017. "Carbon Dioxide Emissions and Economic Growth: An Assessment Based on Production and Consumption Emission Inventories," Ecological Economics, Elsevier, vol. 135(C), pages 269-279.
    11. Alexandra-Anca Purcel, 2020. "New insights into the environmental Kuznets curve hypothesis in developing and transition economies: a literature survey," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 585-631, October.
    12. Arvind Goswami & Harmanpreet Singh Kapoor & Rajesh Kumar Jangir & Caspar Njoroge Ngigi & Behdin Nowrouzi-Kia & Vijay Kumar Chattu, 2023. "Impact of Economic Growth, Trade Openness, Urbanization and Energy Consumption on Carbon Emissions: A Study of India," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    13. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    14. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
    15. Dhimitri Qirjo & Razvan Pascalau, 2021. "Would economic growth affect air pollution in light of the potential transatlantic trade and investment partnership?," International Economics and Economic Policy, Springer, vol. 18(1), pages 127-156, February.
    16. Sun, Xiaohua & Dong, Yan & Wang, Yun & Ren, Junlin, 2022. "Sources of greenhouse gas emission reductions in OECD countries: Composition or technique effects," Ecological Economics, Elsevier, vol. 193(C).
    17. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    18. Paolo Buonanno & Leopoldo Fergusson & Juan F. Vargas, 2014. "The Crime Kuznets Curve," Documentos CEDE 11012, Universidad de los Andes, Facultad de Economía, CEDE.
    19. Germani, Anna Rita & Morone, Piergiuseppe & Testa, Giuseppina, 2014. "Environmental justice and air pollution: A case study on Italian provinces," Ecological Economics, Elsevier, vol. 106(C), pages 69-82.
    20. Darío Serrano-Puente, 2021. "Are we moving toward an energy-efficient low-carbon economy? An input–output LMDI decomposition of CO $$_{2}$$ 2 emissions for Spain and the EU28," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 151-229, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:33:y:2025:i:2:p:1700-1713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.