IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v46y2014icp531-538.html
   My bibliography  Save this article

Integrated assessment of climate impacts and adaptation in the energy sector

Author

Listed:
  • Ciscar, Juan-Carlos
  • Dowling, Paul

Abstract

From an engineering perspective, climate change can affect the energy sector in a number of ways, such as changes in the efficiency of power plants and increases in peak demand due to higher cooling demand in hotter summers. This article reviews how integrated assessment models have estimated the impacts of climate in the energy sector, including the modelling of adaptation. While most of the literature has considered changes in space heating and cooling demand, few models have studied the impacts on the supply side of the energy sector. The article also reviews the main findings of the related literature. A number of knowledge gaps and possible research priorities are identified. Modelling possible adaptation measures and assessing the effects of climate extremes on the energy infrastructure are topics that require further attention.

Suggested Citation

  • Ciscar, Juan-Carlos & Dowling, Paul, 2014. "Integrated assessment of climate impacts and adaptation in the energy sector," Energy Economics, Elsevier, vol. 46(C), pages 531-538.
  • Handle: RePEc:eee:eneeco:v:46:y:2014:i:c:p:531-538
    DOI: 10.1016/j.eneco.2014.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314001601
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Hope, 2013. "Critical issues for the calculation of the social cost of CO 2 : why the estimates from PAGE09 are higher than those from PAGE2002," Climatic Change, Springer, vol. 117(3), pages 531-543, April.
    2. Dowling, Paul, 2013. "The impact of climate change on the European energy system," Energy Policy, Elsevier, vol. 60(C), pages 406-417.
    3. Koch, Hagen & Vögele, Stefan, 2009. "Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change," Ecological Economics, Elsevier, vol. 68(7), pages 2031-2039, May.
    4. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, April.
    5. Mideksa, Torben K. & Kallbekken, Steffen, 2010. "The impact of climate change on the electricity market: A review," Energy Policy, Elsevier, vol. 38(7), pages 3579-3585, July.
    6. Bosello, Francesco & Eboli, Fabio & Pierfederici, Roberta, 2012. "Assessing the Economic Impacts of Climate Change. An Updated CGE Point of View," Climate Change and Sustainable Development 121700, Fondazione Eni Enrico Mattei (FEEM).
    7. Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(1), pages 47-73, January.
    8. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    9. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    10. Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change, Part II. Dynamic Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(2), pages 135-160, February.
    11. Ian Sue Wing & Elisa Lanzi, 2014. "Integrated Assessment of Climate Change Impacts: Conceptual Frameworks, Modelling Approaches and Research Needs," OECD Environment Working Papers 66, OECD Publishing.
    12. Michael Mastrandrea & Massimo Tavoni, 2013. "Foreword to the special issue: climate change, extremes, and energy systems," Climatic Change, Springer, vol. 121(1), pages 1-2, November.
    13. Donald H. Rosenthal & Howard K. Gruenspecht & Emily A. Moran, 1995. "Effects of Global Warming on Energy Use for Space Heating and Cooling in the United States," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    14. Bosetti, Valentina & De Cian, Enrica & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Sustainable Development Papers 55284, Fondazione Eni Enrico Mattei (FEEM).
    15. Hanemann, W. Michael, 2008. "What is the Economic Cost of Climate Change?," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9g11z5cc, Department of Agricultural & Resource Economics, UC Berkeley.
    16. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    17. Olonscheck, Mady & Holsten, Anne & Kropp, Jürgen P., 2011. "Heating and cooling energy demand and related emissions of the German residential building stock under climate change," Energy Policy, Elsevier, vol. 39(9), pages 4795-4806, September.
    18. Karen Fisher-Vanden & Ian Sue Wing & Elisa Lanzi & David Popp, 2013. "Modeling climate change feedbacks and adaptation responses: recent approaches and shortcomings," Climatic Change, Springer, vol. 117(3), pages 481-495, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viviescas, Cindy & Lima, Lucas & Diuana, Fabio A. & Vasquez, Eveline & Ludovique, Camila & Silva, Gabriela N. & Huback, Vanessa & Magalar, Leticia & Szklo, Alexandre & Lucena, André F.P. & Schaeffer, , 2019. "Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Hilden, Mikael & Huuki, Hannu & Kivisaari, Visa & Kopsakangas-Savolainen, Maria, 2018. "The importance of transnational impacts of climate change in a power market," Energy Policy, Elsevier, vol. 115(C), pages 418-425.
    3. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    4. Bauer, Nico & Hilaire, Jérôme & Brecha, Robert J. & Edmonds, Jae & Jiang, Kejun & Kriegler, Elmar & Rogner, Hans-Holger & Sferra, Fabio, 2016. "Assessing global fossil fuel availability in a scenario framework," Energy, Elsevier, vol. 111(C), pages 580-592.
    5. Agrawal, Nikhil & Ahiduzzaman, Md & Kumar, Amit, 2018. "The development of an integrated model for the assessment of water and GHG footprints for the power generation sector," Applied Energy, Elsevier, vol. 216(C), pages 558-575.
    6. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "Are emission reduction policies effective under climate change conditions? A backcasting and exploratory scenario approach using the LEAP-OSeMOSYS Model," Applied Energy, Elsevier, vol. 236(C), pages 1183-1217.
    7. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    8. Simon Parkinson & Ned Djilali, 2015. "Robust response to hydro-climatic change in electricity generation planning," Climatic Change, Springer, vol. 130(4), pages 475-489, June.
    9. Camille Gonseth & Philippe Thalmann & Marc Vielle, 2017. "Impacts of Global Warming on Energy Use for Heating and Cooling with Full Rebound Effects in Switzerland," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 153(4), pages 341-369, October.
    10. Lucas, Edimilson Costa & Mendes-Da-Silva, Wesley, 2018. "Impact of climate on firm value: Evidence from the electric power industry in Brazil," Energy, Elsevier, vol. 153(C), pages 359-368.
    11. Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.
    12. Kristian Fabbri & Jacopo Gaspari & Licia Felicioni, 2020. "Climate Change Effect on Building Performance: A Case Study in New York," Energies, MDPI, Open Access Journal, vol. 13(12), pages 1-19, June.
    13. Pérez, Juan C. & González, Albano & Díaz, Juan P. & Expósito, Francisco J. & Felipe, Jonatan, 2019. "Climate change impact on future photovoltaic resource potential in an orographically complex archipelago, the Canary Islands," Renewable Energy, Elsevier, vol. 133(C), pages 749-759.
    14. Peters, Jeffrey C. & Hertel, Thomas W., 2016. "The database–modeling nexus in integrated assessment modeling of electric power generation," Energy Economics, Elsevier, vol. 56(C), pages 107-116.
    15. Bonjean Stanton, Muriel C. & Dessai, Suraje & Paavola, Jouni, 2016. "A systematic review of the impacts of climate variability and change on electricity systems in Europe," Energy, Elsevier, vol. 109(C), pages 1148-1159.
    16. Enrica Cian & Ian Sue Wing, 2019. "Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 365-410, February.
    17. Jonas Savelsberg & Moritz Schillinger & Ingmar Schlecht & Hannes Weigt, 2018. "The Impact of Climate Change on Swiss Hydropower," Sustainability, MDPI, Open Access Journal, vol. 10(7), pages 1-23, July.

    More about this item

    Keywords

    Climate impacts; Energy sector; Integrated assessment models; Climate adaptation;

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:46:y:2014:i:c:p:531-538. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.