IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v178y2019icp695-713.html
   My bibliography  Save this article

The impact of climatic extreme events on the feasibility of fully renewable power systems: A case study for Sweden

Author

Listed:
  • Höltinger, Stefan
  • Mikovits, Christian
  • Schmidt, Johannes
  • Baumgartner, Johann
  • Arheimer, Berit
  • Lindström, Göran
  • Wetterlund, Elisabeth

Abstract

Long term time series of variable renewable energy (VRE) generation and electricity demand (load) provide important insights into the feasibility of fully renewable power systems. The coverage of energy statistics is usually too short or the temporal resolution too low to study effects related to interannual variability or the impact of climatic extreme events. We use time series simulated from climate data to assess the frequency, duration, and magnitude of extreme residual load events of two fully renewable power scenarios with a share of VRE generation (wind and solar PV) of about 50% for the case of Sweden. We define residual load as load – wind – PV – nuclear generation. Extreme residual load events are events that exceed the balancing or ramping capacities of the current power system. For our analysis, we use 29 years of simulated river runoff and wind and PV generation. Hourly load is derived from MERRA reanalysis temperature data by applying statistical models. Those time series are used along with historic capacity and ramping restrictions of hydro and thermal power plants in an optimization model to minimize extreme residual load events. Our analysis shows that even highly flexible power systems, as the Swedish one, are affected by climatic extreme events if they increase their VRE shares. Replacing current nuclear power capacities by wind power results on average in three extreme residual load events per year that exceed the current power system's flexibility. Additional PV generation capacities instead of wind increase the number of extreme residual load events by about 4%, as most events occur during the winter month when solar generation is close to zero and thus not able to counterbalance low wind events. Contrarily, overproduction and the need to curtail VRE generation become more pressing with higher shares of PV. In the discussion we highlight measures that could provide additional balancing capabilities to cope with the more frequent and severe residual load events in a fully renewable power system with high shares of VRE generation.

Suggested Citation

  • Höltinger, Stefan & Mikovits, Christian & Schmidt, Johannes & Baumgartner, Johann & Arheimer, Berit & Lindström, Göran & Wetterlund, Elisabeth, 2019. "The impact of climatic extreme events on the feasibility of fully renewable power systems: A case study for Sweden," Energy, Elsevier, vol. 178(C), pages 695-713.
  • Handle: RePEc:eee:energy:v:178:y:2019:i:c:p:695-713
    DOI: 10.1016/j.energy.2019.04.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219307613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    2. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    3. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    4. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    5. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    6. Jon Olauson & Mohd Nasir Ayob & Mikael Bergkvist & Nicole Carpman & Valeria Castellucci & Anders Goude & David Lingfors & Rafael Waters & Joakim Widén, 2016. "Net load variability in Nordic countries with a highly or fully renewable power system," Nature Energy, Nature, vol. 1(12), pages 1-8, December.
    7. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    8. Magnano, L. & Boland, J.W., 2007. "Generation of synthetic sequences of electricity demand: Application in South Australia," Energy, Elsevier, vol. 32(11), pages 2230-2243.
    9. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    10. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    11. Schmidt, Johannes & Cancella, Rafael & Pereira, Amaro O., 2016. "The role of wind power and solar PV in reducing risks in the Brazilian hydro-thermal power system," Energy, Elsevier, vol. 115(P3), pages 1748-1757.
    12. Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D.P. & Moschovits, M. & Karagiannis, F. & Papakonstantinou, D., 2006. "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Elsevier, vol. 31(2), pages 208-227.
    13. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    14. Olauson, Jon & Bergkvist, Mikael, 2015. "Modelling the Swedish wind power production using MERRA reanalysis data," Renewable Energy, Elsevier, vol. 76(C), pages 717-725.
    15. Després, Jacques & Mima, Silvana & Kitous, Alban & Criqui, Patrick & Hadjsaid, Nouredine & Noirot, Isabelle, 2017. "Storage as a flexibility option in power systems with high shares of variable renewable energy sources: a POLES-based analysis," Energy Economics, Elsevier, vol. 64(C), pages 638-650.
    16. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    17. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    18. Marianne Zeyringer & James Price & Birgit Fais & Pei-Hao Li & Ed Sharp, 2018. "Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather," Nature Energy, Nature, vol. 3(5), pages 395-403, May.
    19. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    2. Gonçalves, Ana & Marques, Margarida Correia & Loureiro, Sílvia & Nieto, Raquel & Liberato, Margarida L.R., 2023. "Disruption risk analysis of the overhead power lines in Portugal," Energy, Elsevier, vol. 263(PA).
    3. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    4. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
    6. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    7. Zhong, Ruida & Zhao, Tongtiegang & Chen, Xiaohong, 2021. "Evaluating the tradeoff between hydropower benefit and ecological interest under climate change: How will the water-energy-ecosystem nexus evolve in the upper Mekong basin?," Energy, Elsevier, vol. 237(C).
    8. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani & Koskela, Liinu, 2021. "Linking socio-economic aspects to power system disruption models," Energy, Elsevier, vol. 222(C).
    9. Zuin, Gianlucca & Buechler, Rob & Sun, Tao & Zanocco, Chad & Galuppo, Francisco & Veloso, Adriano & Rajagopal, Ram, 2023. "Extreme event counterfactual analysis of electricity consumption in Brazil: Historical impacts and future outlook under climate change," Energy, Elsevier, vol. 281(C).
    10. Pilpola, Sannamari & Lund, Peter D., 2020. "Analyzing the effects of uncertainties on the modelling of low-carbon energy system pathways," Energy, Elsevier, vol. 201(C).
    11. François, B. & Puspitarini, H.D. & Volpi, E. & Borga, M., 2022. "Statistical analysis of electricity supply deficits from renewable energy sources across an Alpine transect," Renewable Energy, Elsevier, vol. 201(P1), pages 1200-1212.
    12. Younes Mohammadi & Aleksey Palstev & Boštjan Polajžer & Seyed Mahdi Miraftabzadeh & Davood Khodadad, 2023. "Investigating Winter Temperatures in Sweden and Norway: Potential Relationships with Climatic Indices and Effects on Electrical Power and Energy Systems," Energies, MDPI, vol. 16(14), pages 1-34, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    2. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    3. Bowen Li & Sukanta Basu & Simon J. Watson & Herman W. J. Russchenberg, 2021. "A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas," Energies, MDPI, vol. 14(20), pages 1-14, October.
    4. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    5. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    6. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    7. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    8. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    9. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    10. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    12. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    13. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    14. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    15. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.
    16. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    17. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    18. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    19. González-Aparicio, I. & Monforti, F. & Volker, P. & Zucker, A. & Careri, F. & Huld, T. & Badger, J., 2017. "Simulating European wind power generation applying statistical downscaling to reanalysis data," Applied Energy, Elsevier, vol. 199(C), pages 155-168.
    20. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:178:y:2019:i:c:p:695-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.