IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544225000040.html
   My bibliography  Save this article

Comparison of pumping station and electrochemical energy storage enhancement mode for hydro-wind-photovoltaic hybrid systems

Author

Listed:
  • Lin, Mengke
  • Shen, Jianjian
  • Guo, Xihai
  • Ge, Linsong
  • Lü, Quan

Abstract

Utilizing hydropower to mitigate the variability of wind power and photovoltaic has been proven to be an effective strategy for enhancing their utilization. However, the integration scale depends largely on hydropower regulation capacity. This paper compares the technical and economic differences between pumped storage and electrochemical energy storage enhancement modes for hydro-wind-photovoltaic systems. Pumped storage retrofits involve adding pumping stations between adjacent reservoirs. Two detailed coupling models are developed, and a fine-grained simulation optimization approach is used to capture operational details. Moreover, economic indicators are established from an engineering project perspective to evaluate their profitability. Taking a cascaded hydropower in China as a case study. The results show that: (1) Pumping station mode has 2.58 times more annual incremental revenue than battery storage mode. The differences can be attributed to energy storage and transmission capacity occupations variances. (2) Considering the high replacement cost of batteries, the net revenue of the battery storage mode over the project's life is negative and economically infeasible. In contrast, the net revenue from the pumping station mode amounts to 251 million CNY. (3) Initial battery cost must be reduced to at least 75 %, and transmission capacity needs to be increased to realize the economics.

Suggested Citation

  • Lin, Mengke & Shen, Jianjian & Guo, Xihai & Ge, Linsong & Lü, Quan, 2025. "Comparison of pumping station and electrochemical energy storage enhancement mode for hydro-wind-photovoltaic hybrid systems," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000040
    DOI: 10.1016/j.energy.2025.134362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Chen, Cong & Chen, Zhe, 2020. "Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system," Renewable Energy, Elsevier, vol. 147(P1), pages 1418-1431.
    2. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Höltinger, Stefan & Mikovits, Christian & Schmidt, Johannes & Baumgartner, Johann & Arheimer, Berit & Lindström, Göran & Wetterlund, Elisabeth, 2019. "The impact of climatic extreme events on the feasibility of fully renewable power systems: A case study for Sweden," Energy, Elsevier, vol. 178(C), pages 695-713.
    4. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).
    5. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    6. Islam, M.S. & Das, Barun K. & Das, Pronob & Rahaman, Md Habibur, 2021. "Techno-economic optimization of a zero emission energy system for a coastal community in Newfoundland, Canada," Energy, Elsevier, vol. 220(C).
    7. Kazak, Jan & van Hoof, Joost & Szewranski, Szymon, 2017. "Challenges in the wind turbines location process in Central Europe – The use of spatial decision support systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 425-433.
    8. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    9. Bullich-Massagué, Eduard & Cifuentes-García, Francisco-Javier & Glenny-Crende, Ignacio & Cheah-Mañé, Marc & Aragüés-Peñalba, Mònica & Díaz-González, Francisco & Gomis-Bellmunt, Oriol, 2020. "A review of energy storage technologies for large scale photovoltaic power plants," Applied Energy, Elsevier, vol. 274(C).
    10. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2022. "The development of an assessment framework to determine the technical hydrogen production potential from wind and solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    11. Rahman, Md Mustafizur & Oni, Abayomi Olufemi & Gemechu, Eskinder & Kumar, Amit, 2021. "The development of techno-economic models for the assessment of utility-scale electro-chemical battery storage systems," Applied Energy, Elsevier, vol. 283(C).
    12. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Shen, Jianjian & Wu, Xinyu & Su, Huaying, 2022. "Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China," Energy, Elsevier, vol. 260(C).
    13. Guo, Yi & Ming, Bo & Huang, Qiang & Liu, Pan & Wang, Yimin & Fang, Wei & Zhang, Wei, 2022. "Evaluating effects of battery storage on day-ahead generation scheduling of large hydro–wind–photovoltaic complementary systems," Applied Energy, Elsevier, vol. 324(C).
    14. Jiang, Jianhua & Ming, Bo & Liu, Pan & Huang, Qiang & Guo, Yi & Chang, Jianxia & Zhang, Wei, 2023. "Refining long-term operation of large hydro–photovoltaic–wind hybrid systems by nesting response functions," Renewable Energy, Elsevier, vol. 204(C), pages 359-371.
    15. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    17. Mulleriyawage, U.G.K. & Shen, W.X., 2020. "Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study," Renewable Energy, Elsevier, vol. 160(C), pages 852-864.
    18. Zhao, Ziwen & Ding, Xinjun & Behrens, Paul & Li, Jianling & He, Mengjiao & Gao, Yuanqiang & Liu, Gongcheng & Xu, Beibei & Chen, Diyi, 2023. "The importance of flexible hydropower in providing electricity stability during China’s coal phase-out," Applied Energy, Elsevier, vol. 336(C).
    19. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    20. Parra, David & Patel, Martin K., 2019. "The nature of combining energy storage applications for residential battery technology," Applied Energy, Elsevier, vol. 239(C), pages 1343-1355.
    21. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    22. Zhou, Siyu & Han, Yang & Zalhaf, Amr S. & Chen, Shuheng & Zhou, Te & Yang, Ping & Elboshy, Bahaa, 2023. "A novel multi-objective scheduling model for grid-connected hydro-wind-PV-battery complementary system under extreme weather: A case study of Sichuan, China," Renewable Energy, Elsevier, vol. 212(C), pages 818-833.
    23. Su, Chengguo & Cheng, Chuntian & Wang, Peilin & Shen, Jianjian & Wu, Xinyu, 2019. "Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants," Applied Energy, Elsevier, vol. 242(C), pages 285-293.
    24. Shen, Jian-jian & Cheng, Chun-tian & Jia, Ze-bin & Zhang, Yang & Lv, Quan & Cai, Hua-xiang & Wang, Bang-can & Xie, Meng-fei, 2022. "Impacts, challenges and suggestions of the electricity market for hydro-dominated power systems in China," Renewable Energy, Elsevier, vol. 187(C), pages 743-759.
    25. Li, Jianglong & Ho, Mun Sing & Xie, Chunping & Stern, Nicholas, 2022. "China's flexibility challenge in achieving carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    26. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    27. Tan, Qiaofeng & Nie, Zhuang & Wen, Xin & Su, Huaying & Fang, Guohua & Zhang, Ziyi, 2024. "Complementary scheduling rules for hybrid pumped storage hydropower-photovoltaic power system reconstructing from conventional cascade hydropower stations," Applied Energy, Elsevier, vol. 355(C).
    28. Mallapragada, Dharik S. & Sepulveda, Nestor A. & Jenkins, Jesse D., 2020. "Long-run system value of battery energy storage in future grids with increasing wind and solar generation," Applied Energy, Elsevier, vol. 275(C).
    29. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    30. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    31. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    32. Figueiredo, Raquel & Nunes, Pedro & Brito, Miguel C., 2021. "The resilience of a decarbonized power system to climate variability: Portuguese case study," Energy, Elsevier, vol. 224(C).
    33. Ak, Mümtaz & Kentel, Elcin & Savasaneril, Secil, 2019. "Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system," Renewable Energy, Elsevier, vol. 139(C), pages 739-752.
    34. Marianne Zeyringer & James Price & Birgit Fais & Pei-Hao Li & Ed Sharp, 2018. "Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather," Nature Energy, Nature, vol. 3(5), pages 395-403, May.
    35. Liu, Zifa & Zhang, Zhe & Zhuo, Ranqun & Wang, Xuyang, 2019. "Optimal operation of independent regional power grid with multiple wind-solar-hydro-battery power," Applied Energy, Elsevier, vol. 235(C), pages 1541-1550.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Siyu & Han, Yang & Zalhaf, Amr S. & Chen, Shuheng & Zhou, Te & Yang, Ping & Elboshy, Bahaa, 2023. "A novel multi-objective scheduling model for grid-connected hydro-wind-PV-battery complementary system under extreme weather: A case study of Sichuan, China," Renewable Energy, Elsevier, vol. 212(C), pages 818-833.
    2. Shi, Yunhong & Wang, Honglei & Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2024. "Stochastic optimization of system configurations and operation of hybrid cascade hydro-wind-photovoltaic with battery for uncertain medium- and long-term load growth," Applied Energy, Elsevier, vol. 364(C).
    3. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Shen, Jianjian & Wu, Xinyu & Su, Huaying, 2022. "Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China," Energy, Elsevier, vol. 260(C).
    4. Wang, Zhenni & Tan, Qiaofeng & Wen, Xin & Su, Huaying & Fang, Guohua & Wang, Hao, 2025. "Capacity optimization of retrofitting cascade hydropower plants with pumping stations for renewable energy integration: A case study," Applied Energy, Elsevier, vol. 377(PC).
    5. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    6. Zhang, Pengfei & Ma, Chao & Lian, Jijian & Li, Peiyao & Liu, Lu, 2024. "Medium- and long-term operation optimization of the LCHES-WP hybrid power system considering the settlement rules of the electricity trading market," Applied Energy, Elsevier, vol. 359(C).
    7. Lei, Hongxuan & Liu, Pan & Cheng, Qian & Xu, Huan & Liu, Weibo & Zheng, Yalian & Chen, Xiangding & Zhou, Yong, 2024. "Frequency, duration, severity of energy drought and its propagation in hydro-wind-photovoltaic complementary systems," Renewable Energy, Elsevier, vol. 230(C).
    8. Yue, Tingyi & Li, Chengjiang & Hu, Yu-jie & Wang, Honglei, 2025. "Dispatch optimization study of hybrid pumped storage-wind-photovoltaic system considering seasonal factors," Renewable Energy, Elsevier, vol. 238(C).
    9. Gonçalves, Ana & Marques, Margarida Correia & Loureiro, Sílvia & Nieto, Raquel & Liberato, Margarida L.R., 2023. "Disruption risk analysis of the overhead power lines in Portugal," Energy, Elsevier, vol. 263(PA).
    10. Cheng, Wenjie & Zhao, Zhipeng & Cheng, Chuntian & Yu, Zhihui & Gao, Ying, 2024. "Optimizing peak shaving operation in hydro-dominated hybrid power systems with limited distributional information on renewable energy uncertainty," Renewable Energy, Elsevier, vol. 237(PC).
    11. Peng, Yirui & Zhu, Ju & Wang, Jia & Zhang, Shuqi & Du, Qian & Dong, Heming & Zhang, Yu & Gao, Jianmin & Xie, Min, 2024. "Design and development of an advanced gas storage device and control method for a novel compressed CO2 energy storage system," Renewable Energy, Elsevier, vol. 237(PA).
    12. Guo, Yi & Ming, Bo & Huang, Qiang & Liu, Pan & Wang, Yimin & Fang, Wei & Zhang, Wei, 2022. "Evaluating effects of battery storage on day-ahead generation scheduling of large hydro–wind–photovoltaic complementary systems," Applied Energy, Elsevier, vol. 324(C).
    13. Zhou, Yanlai & Ning, Zhihao & Huang, Kangkang & Guo, Shenglian & Xu, Chong-Yu & Chang, Fi-John, 2025. "Sustainable energy integration: Enhancing the complementary operation of pumped-storage power and hydropower systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    14. Wang, Zizhao & Li, Yang & Wu, Feng & Wu, Jiawei & Shi, Linjun & Lin, Keman, 2024. "Multi-objective day-ahead scheduling of cascade hydropower-photovoltaic complementary system with pumping installation," Energy, Elsevier, vol. 290(C).
    15. Zhao, Hongye & Liao, Shengli & Ma, Xiangyu & Fang, Zhou & Cheng, Chuntian & Zhang, Zheng, 2024. "Short-term peak-shaving scheduling of a hydropower-dominated hydro-wind-solar photovoltaic hybrid system considering a shared multienergy coupling transmission channel," Applied Energy, Elsevier, vol. 372(C).
    16. He, Yaoyao & Hong, Xiaoyu & Wang, Chao & Qin, Hui, 2023. "Optimal capacity configuration of the hydro-wind-photovoltaic complementary system considering cascade reservoir connection," Applied Energy, Elsevier, vol. 352(C).
    17. Sadettin Ergun & Abdullah Dik & Rabah Boukhanouf & Siddig Omer, 2025. "Large-Scale Renewable Energy Integration: Tackling Technical Obstacles and Exploring Energy Storage Innovations," Sustainability, MDPI, vol. 17(3), pages 1-31, February.
    18. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    19. Ju, Chang & Ding, Tao & Jia, Wenhao & Mu, Chenggang & Zhang, Hongji & Sun, Yuge, 2023. "Two-stage robust unit commitment with the cascade hydropower stations retrofitted with pump stations," Applied Energy, Elsevier, vol. 334(C).
    20. Yuanyuan Liu & Hao Zhang & Pengcheng Guo & Chenxi Li & Shuai Wu, 2024. "Optimal Scheduling of a Cascade Hydropower Energy Storage System for Solar and Wind Energy Accommodation," Energies, MDPI, vol. 17(11), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.