IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipas0360544222024690.html
   My bibliography  Save this article

Disruption risk analysis of the overhead power lines in Portugal

Author

Listed:
  • Gonçalves, Ana
  • Marques, Margarida Correia
  • Loureiro, Sílvia
  • Nieto, Raquel
  • Liberato, Margarida L.R.

Abstract

The growing increase in frequency and intensity of extreme weather events (EWEs) has a wide impact on energy systems and consumers, as energy transmission infrastructures - overhead power lines (OPL). The main objective of this work is to present the methodology of risk analysis of the EWEs on OPL in Portugal. The level of risk associated with each of the identified events is classified according to the probability of occurrence and consequences, in a risk matrix, and through the cause-and-effect analysis. It is concluded that, in Portugal, the extreme wind – corresponding to level 11 of the Beaufort Wind Force Scale, that is, values equal to or higher than 105.1 km h−1 (29.22 m s−1) – is the main factor that provoked the OPL disruption, between 28% and 40% of analyzed events associated with windstorms. Considering the occurrence of compound events - wind and rain - the probability of damage to OPL is between 21% and 30%; for wind and ice, it is 3%–5%. EWEs represent a serious risk for electrical systems, and it is necessary to develop effective solutions to minimize the associated impacts, such as the modification and upgrade of the current design and engineering standards, and electrical network monitoring.

Suggested Citation

  • Gonçalves, Ana & Marques, Margarida Correia & Loureiro, Sílvia & Nieto, Raquel & Liberato, Margarida L.R., 2023. "Disruption risk analysis of the overhead power lines in Portugal," Energy, Elsevier, vol. 263(PA).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024690
    DOI: 10.1016/j.energy.2022.125583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222024690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mario COCCIA, 2017. "The Fishbone diagram to identify, systematize and analyze the sources of general purpose technologies," Journal of Social and Administrative Sciences, KSP Journals, vol. 4(4), pages 291-303, December.
    2. Höltinger, Stefan & Mikovits, Christian & Schmidt, Johannes & Baumgartner, Johann & Arheimer, Berit & Lindström, Göran & Wetterlund, Elisabeth, 2019. "The impact of climatic extreme events on the feasibility of fully renewable power systems: A case study for Sweden," Energy, Elsevier, vol. 178(C), pages 695-713.
    3. Louis Anthony (Tony)Cox, 2008. "What's Wrong with Risk Matrices?," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 497-512, April.
    4. Yu, Xuchao & Liang, Wei & Zhang, Laibin & Reniers, Genserik & Lu, Linlin, 2018. "Risk assessment of the maintenance process for onshore oil and gas transmission pipelines under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 50-67.
    5. Gheorghe ILIE & Carmen Nadia CIOCOIU, 2010. "Application Of Fishbone Diagram To Determine The Risk Of An Event With Multiple Causes," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 2(1), pages 1-20, March.
    6. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    7. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Author Correction: Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(8), pages 750-750, August.
    8. Andrew Lukas Chojnacki, 2021. "Assessment of the Risk of Damage to 110 kV Overhead Lines Due to Wind," Energies, MDPI, vol. 14(3), pages 1-14, January.
    9. Joanna Rosak-Szyrocka & Justyna Żywiołek, 2022. "Qualitative Analysis of Household Energy Awareness in Poland," Energies, MDPI, vol. 15(6), pages 1-16, March.
    10. Ibrahim, Nur Atirah & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Mustaffa, Azizul Azri & Kidam, Kamarizan, 2022. "Risk matrix approach of extreme temperature and precipitation for renewable energy systems in Malaysia," Energy, Elsevier, vol. 254(PC).
    11. Stan Kaplan, 1997. "The Words of Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 17(4), pages 407-417, August.
    12. Pascal Peduzzi, 2019. "The Disaster Risk, Global Change, and Sustainability Nexus," Sustainability, MDPI, vol. 11(4), pages 1-21, February.
    13. Matko, Maruša & Golobič, Mojca & Kontić, Branko, 2017. "Reducing risks to electric power infrastructure due to extreme weather events by means of spatial planning: Case studies from Slovenia," Utilities Policy, Elsevier, vol. 44(C), pages 12-24.
    14. Waraporn Luejai & Thanapong Suwanasri & Cattareeya Suwanasri, 2021. "D-distance Risk Factor for Transmission Line Maintenance Management and Cost Analysis," Sustainability, MDPI, vol. 13(15), pages 1-14, July.
    15. Scherb, Anke & Garrè, Luca & Straub, Daniel, 2019. "Evaluating component importance and reliability of power transmission networks subject to windstorms: methodology and application to the nordic grid," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. David Ward, 2013. "The effect of weather on grid systems and the reliability of electricity supply," Climatic Change, Springer, vol. 121(1), pages 103-113, November.
    17. A. T. D. Perera & Vahid M. Nik & Deliang Chen & Jean-Louis Scartezzini & Tianzhen Hong, 2020. "Quantifying the impacts of climate change and extreme climate events on energy systems," Nature Energy, Nature, vol. 5(2), pages 150-159, February.
    18. Jun Guo & Tao Feng & Zelin Cai & Xianglong Lian & Wenhu Tang, 2020. "Vulnerability Assessment for Power Transmission Lines under Typhoon Weather Based on a Cascading Failure State Transition Diagram," Energies, MDPI, vol. 13(14), pages 1-15, July.
    19. Marianne Zeyringer & James Price & Birgit Fais & Pei-Hao Li & Ed Sharp, 2018. "Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather," Nature Energy, Nature, vol. 3(5), pages 395-403, May.
    20. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Jackson, Nicole D. & Gunda, Thushara, 2021. "Evaluation of extreme weather impacts on utility-scale photovoltaic plant performance in the United States," Applied Energy, Elsevier, vol. 302(C).
    3. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    4. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    5. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    9. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    10. Kuik, Onno & Zhou, Fujin & Ciullo, Alessio & Brusselaers, Jan, 2022. "How vulnerable is Europe to severe climate-related natural disasters abroad? A dynamic CGE analysis of the international financial and economic impacts of a large hurricane in the southern USA," Conference papers 333438, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    14. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    15. Arthur Moses & Jean E. T. McLain & Aminata Kilungo & Robert A. Root & Leif Abrell & Sanlyn Buxner & Flor Sandoval & Theresa Foley & Miriam Jones & Mónica D. Ramírez-Andreotta, 2022. "Minding the gap: socio-demographic factors linked to the perception of environmental pollution, water harvesting infrastructure, and gardening characteristics," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(3), pages 594-610, September.
    16. Mahshid Ghanbari & Mazdak Arabi & Matei Georgescu & Ashley M. Broadbent, 2023. "The role of climate change and urban development on compound dry-hot extremes across US cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    18. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Lusheng Li & Lili Zhao & Yanbin Li, 2023. "Spatiotemporal Characteristics of Meteorological and Agricultural Droughts in China: Change Patterns and Causes," Agriculture, MDPI, vol. 13(2), pages 1-16, January.
    20. Stefan Hochrainer-Stigler & Qinhan Zhu & Karina Reiter & Alessio Ciullo, 2023. "Challenges of instruments that should tackle multi-hazard and multi-risk situations: an assessment of the recent reforms of the European Solidarity Fund and the Solidarity and Emergency Aid Reserve," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(8), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.