IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v392y2025ics0306261925006373.html
   My bibliography  Save this article

Optimisation of photovoltaic and battery systems for cost-effective energy solutions in commercial buildings

Author

Listed:
  • Laksahapsoro, Brantyo
  • Bird, Max
  • Acha, Salvador
  • Shah, Nilay

Abstract

This study investigates the optimisation of photovoltaic (PV) and battery energy storage systems (BESS) for commercial buildings in the UK, addressing the need for cost-effective energy solutions and the challenge of ensuring financial viability. A mixed-integer linear programming (MILP) model is developed to simultaneously optimise the design and operation of PV-BESS systems, focusing on minimising the 15-year net present cost. In doing so, the model comprehensively assesses a wide range of relevant factors, including electricity market dynamics, weather conditions, technology performance and costs, energy demand, and building-specific characteristics. The optimisation model is demonstrated through a case study informed by an actual commercial building in the UK. The results indicate that a combination of mono-crystalline silicon PV modules and lithium iron phosphate (LFP) batteries yields the optimal solution, providing about 46% of the building's annual energy demand. The optimised system successfully achieves a balanced trade-off between cost and technical performance, offering a sensible payback period of 5.5 years and a 15-year NPV of £303.8k, resulting in 20% cost savings compared to the business-as-usual (BaU) scenario. The sensitivity analysis shows that high electricity prices lead to better financial outcomes, while higher energy storage costs reduce system viability. This work provides a practical framework for evaluating the design, operation, and financial viability of PV-BESS systems, while delivering actionable insights to support the broader adoption of these technologies.

Suggested Citation

  • Laksahapsoro, Brantyo & Bird, Max & Acha, Salvador & Shah, Nilay, 2025. "Optimisation of photovoltaic and battery systems for cost-effective energy solutions in commercial buildings," Applied Energy, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006373
    DOI: 10.1016/j.apenergy.2025.125907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Acha, Salvador & Mariaud, Arthur & Shah, Nilay & Markides, Christos N., 2018. "Optimal design and operation of distributed low-carbon energy technologies in commercial buildings," Energy, Elsevier, vol. 142(C), pages 578-591.
    3. Mulleriyawage, U.G.K. & Shen, W.X., 2020. "Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study," Renewable Energy, Elsevier, vol. 160(C), pages 852-864.
    4. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    5. Ioannis Mexis & Grazia Todeschini, 2020. "Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications," Energies, MDPI, vol. 13(14), pages 1-31, July.
    6. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    7. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    8. Martins, Jason & Miles, John, 2021. "A techno-economic assessment of battery business models in the UK electricity market," Energy Policy, Elsevier, vol. 148(PB).
    9. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    10. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    11. Ranaweera, Iromi & Midtgård, Ole-Morten, 2016. "Optimization of operational cost for a grid-supporting PV system with battery storage," Renewable Energy, Elsevier, vol. 88(C), pages 262-272.
    12. Cedillos Alvarado, Dagoberto & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2016. "A Technology Selection and Operation (TSO) optimisation model for distributed energy systems: Mathematical formulation and case study," Applied Energy, Elsevier, vol. 180(C), pages 491-503.
    13. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    15. Kendall Mongird & Vilayanur Viswanathan & Patrick Balducci & Jan Alam & Vanshika Fotedar & Vladimir Koritarov & Boualem Hadjerioua, 2020. "An Evaluation of Energy Storage Cost and Performance Characteristics," Energies, MDPI, vol. 13(13), pages 1-53, June.
    16. Mariaud, Arthur & Acha, Salvador & Ekins-Daukes, Ned & Shah, Nilay & Markides, Christos N., 2017. "Integrated optimisation of photovoltaic and battery storage systems for UK commercial buildings," Applied Energy, Elsevier, vol. 199(C), pages 466-478.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
    2. Li, Dacheng & Guo, Songshan & He, Wei & King, Marcus & Wang, Jihong, 2021. "Combined capacity and operation optimisation of lithium-ion battery energy storage working with a combined heat and power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    3. Acha, Salvador & Le Brun, Niccolo & Damaskou, Maria & Fubara, Tekena Craig & Mulgundmath, Vinay & Markides, Christos N. & Shah, Nilay, 2020. "Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector," Energy, Elsevier, vol. 206(C).
    4. Lin, Mengke & Shen, Jianjian & Guo, Xihai & Ge, Linsong & Lü, Quan, 2025. "Comparison of pumping station and electrochemical energy storage enhancement mode for hydro-wind-photovoltaic hybrid systems," Energy, Elsevier, vol. 315(C).
    5. Liu, Jiangyang & Liu, Zhongbing & Wu, Yaling & Chen, Xi & Xiao, Hui & Zhang, Ling, 2022. "Impact of climate on photovoltaic battery energy storage system optimization," Renewable Energy, Elsevier, vol. 191(C), pages 625-638.
    6. Liu, Xuezhi & Yan, Zheng & Wu, Jianzhong, 2019. "Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices," Applied Energy, Elsevier, vol. 248(C), pages 256-273.
    7. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    8. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2018. "A two-level decision making approach for optimal integrated urban water and energy management," Energy, Elsevier, vol. 155(C), pages 408-425.
    9. Jiyoung Eum & Yongki Kim, 2020. "Analysis on Operation Modes of Residential BESS with Balcony-PV for Apartment Houses in Korea," Sustainability, MDPI, vol. 13(1), pages 1-9, December.
    10. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    11. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    12. Maria M. Symeonidou & Effrosyni Giama & Agis M. Papadopoulos, 2021. "Life Cycle Assessment for Supporting Dimensioning Battery Storage Systems in Micro-Grids for Residential Applications," Energies, MDPI, vol. 14(19), pages 1-16, September.
    13. Jessica Thomsen & Christoph Weber, "undated". "How the design of retail prices, network charges, and levies affects profitability and operation of small-scale PV-Battery Storage Systems," EWL Working Papers 1903, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    14. Chen, Xi & Liu, Zhongbing & Wang, Pengcheng & Li, Benjia & Liu, Ruimiao & Zhang, Ling & Zhao, Chengliang & Luo, Songqin, 2023. "Multi-objective optimization of battery capacity of grid-connected PV-BESS system in hybrid building energy sharing community considering time-of-use tariff," Applied Energy, Elsevier, vol. 350(C).
    15. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    16. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    17. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    18. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    19. Kuznetsova, Elizaveta & Anjos, Miguel F., 2021. "Prosumers and energy pricing policies: When, where, and under which conditions will prosumers emerge? A case study for Ontario (Canada)," Energy Policy, Elsevier, vol. 149(C).
    20. Lu, Mengxue & Lai, Joseph, 2020. "Review on carbon emissions of commercial buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.