IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3645-d1383712.html
   My bibliography  Save this article

Optimizing Energy Arbitrage: Benchmark Models for LFP Battery Dynamic Activation Costs in Reactive Balancing Market

Author

Listed:
  • Samuel O. Ezennaya

    (Department of Electrical Energy Storage Technology (EET), Institute of Energy and Automation, Technical University Berlin, Einsteinufer 11, 10587 Berlin, Germany)

  • Julia Kowal

    (Department of Electrical Energy Storage Technology (EET), Institute of Energy and Automation, Technical University Berlin, Einsteinufer 11, 10587 Berlin, Germany)

Abstract

This study introduces a novel benchmark model for lithium iron phosphate (LFP) batteries in reactive energy imbalance markets, filling a notable gap by incorporating comprehensive operational parameters and market dynamics that are overlooked by conventional models. Addressing the absence of a holistic benchmark for energy-storage systems in electricity markets, this research focuses on the integration of LFP batteries, considering their unique characteristics and market responsiveness. Regression and regularization techniques, coupled with temporal cross-validation, were employed to ensure model robustness and accuracy in predicting energy trading outcomes. This methodological approach allows for a nuanced analysis of battery degradation, power capacity, energy content, and real-time market prices. The model, validated using Belgium’s system imbalance market data from the 2020–2023 period, incorporates both capital and operational expenditures to assess the economic and operational viability of LFP battery energy-storage systems (BESSs). The findings reveal that considering a broader range of operational parameters in energy arbitrage, beyond just the usual energy prices and round-trip efficiency, significantly influences the cost-effectiveness and performance benchmarking of energy storage solutions. This paper advocates for the strategic use of LFP batteries in energy markets, highlighting their potential to enhance grid stability and energy trading profitability. The proposed benchmark model serves as a critical tool for energy traders, providing a detailed framework for informed decision making in the evolving landscape of energy storage technologies.

Suggested Citation

  • Samuel O. Ezennaya & Julia Kowal, 2024. "Optimizing Energy Arbitrage: Benchmark Models for LFP Battery Dynamic Activation Costs in Reactive Balancing Market," Sustainability, MDPI, vol. 16(9), pages 1-31, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3645-:d:1383712
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Yu & Armada, Miguel & Jesús Sánchez, María, 2022. "Potential utilization of battery energy storage systems (BESS) in the major European electricity markets," Applied Energy, Elsevier, vol. 322(C).
    2. Yu Hu & Miguel Armada & Maria Jesus Sanchez, 2021. "Potential utilization of Battery Energy Storage Systems (BESS) in the major European electricity markets," Papers 2112.09816, arXiv.org, revised Jun 2022.
    3. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    4. Martins, Jason & Miles, John, 2021. "A techno-economic assessment of battery business models in the UK electricity market," Energy Policy, Elsevier, vol. 148(PB).
    5. Nottrott, A. & Kleissl, J. & Washom, B., 2013. "Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems," Renewable Energy, Elsevier, vol. 55(C), pages 230-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    2. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    3. Heine, Karl & Thatte, Amogh & Tabares-Velasco, Paulo Cesar, 2019. "A simulation approach to sizing batteries for integration with net-zero energy residential buildings," Renewable Energy, Elsevier, vol. 139(C), pages 176-185.
    4. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    5. Ayat-Allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2021. "Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios," Post-Print hal-03344439, HAL.
    6. Pablo Carrasco Ortega & Pablo Durán Gómez & Julio César Mérida Sánchez & Fernando Echevarría Camarero & Ángel Á. Pardiñas, 2023. "Battery Energy Storage Systems for the New Electricity Market Landscape: Modeling, State Diagnostics, Management, and Viability—A Review," Energies, MDPI, vol. 16(17), pages 1-51, August.
    7. Lauinger, Dirk & Vuille, François & Kuhn, Daniel, 2024. "Frequency regulation with storage: On losses and profits," European Journal of Operational Research, Elsevier, vol. 319(2), pages 442-455.
    8. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    9. Nguyen, Su & Peng, Wei & Sokolowski, Peter & Alahakoon, Damminda & Yu, Xinghuo, 2018. "Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 228(C), pages 2567-2580.
    10. Topalović, Zejneba & Haas, Reinhard & Sayer, Marlene, 2024. "Economic benefits of PHS and Li-ion storage. Study cases: Austria and Bosnia and Herzegovina," Applied Energy, Elsevier, vol. 362(C).
    11. Sai, Wei & Pan, Zehua & Liu, Siyu & Jiao, Zhenjun & Zhong, Zheng & Miao, Bin & Chan, Siew Hwa, 2023. "Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms," Applied Energy, Elsevier, vol. 352(C).
    12. Ayat-allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2021. "Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios," Energies, MDPI, vol. 14(15), pages 1-43, August.
    13. Li, Junhui & Zhang, Jingxiang & Mu, Gang & Li, Cuiping & Yan, Gangui & Zhu, Xingxu & Jia, Chen, 2024. "Dynamic partitioning method for independent energy storage zones participating in peak modulation and frequency modulation under the auxiliary service market," Applied Energy, Elsevier, vol. 361(C).
    14. Corentin Jankowiak & Aggelos Zacharopoulos & Caterina Brandoni & Patrick Keatley & Paul MacArtain & Neil Hewitt, 2019. "The Role of Domestic Integrated Battery Energy Storage Systems for Electricity Network Performance Enhancement," Energies, MDPI, vol. 12(20), pages 1-27, October.
    15. Ma, Qianli & Wei, Wei & Mei, Shengwei, 2024. "Health-aware coordinate long-term and short-term operation for BESS in energy and frequency regulation markets," Applied Energy, Elsevier, vol. 356(C).
    16. Dirk Lauinger & Franc{c}ois Vuille & Daniel Kuhn, 2023. "Frequency Regulation with Storage: On Losses and Profits," Papers 2306.02987, arXiv.org, revised Mar 2024.
    17. Vu Ba Hau & Munir Husein & Il-Yop Chung & Dong-Jun Won & William Torre & Truong Nguyen, 2018. "Analyzing the Impact of Renewable Energy Incentives and Parameter Uncertainties on Financial Feasibility of a Campus Microgrid," Energies, MDPI, vol. 11(9), pages 1-24, September.
    18. Adrian Grimm & Patrik Schönfeldt & Herena Torio & Peter Klement & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2021. "Deduction of Optimal Control Strategies for a Sector-Coupled District Energy System," Energies, MDPI, vol. 14(21), pages 1-13, November.
    19. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    20. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3645-:d:1383712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.