IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p311-d473164.html
   My bibliography  Save this article

Analysis on Operation Modes of Residential BESS with Balcony-PV for Apartment Houses in Korea

Author

Listed:
  • Jiyoung Eum

    (Green Building Research Center, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Korea)

  • Yongki Kim

    (Green Building Research Center, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Korea)

Abstract

The integration of battery energy storage systems (BESS) with renewable energy is a potential solution to address the disadvantages of renewable energy systems, which is irregular and intermittent power. In particular, residential BESS is advancing in numerous countries. The residential BESS connected to the photovoltaic system (PV) can store the PV power in the battery through charging, and supply the PV power, which was stored in the battery, to the load through discharging when there is no PV power. Therefore, the utilization of residential BESS with PV reduces the daily electric power consumption and the electricity bills that households have to charge. However, it is understood that there is no case of installing and using residential BESS in Korea yet. Most residential houses in Korea are apartment houses, and thus residential BESS can be used with balcony PV. This paper presents operation modes of residential BESS with balcony PV for apartment houses. The BESS capacity was estimated by considering the balcony PV capacity, which can be installed in households, and power consumption. The applicability of the residential BESS was analyzed through performance and economics evaluation under current and various conditions. The operation modes of BESS were divided into four types according to PV power supply priority and battery charging source, and a test took place in a demonstration house. The risk of fully discharging the battery has been discovered when PV power is first charged to the battery or when only PV power is charged with the battery. As a result, preferential charging of the battery with PV power and then with PV and grid power was found to be the most optimal operation mode. In addition, additional functions were proposed for residential BESS in apartment households. The results will contribute to effective application of residential BESS with balcony PV in the near future.

Suggested Citation

  • Jiyoung Eum & Yongki Kim, 2020. "Analysis on Operation Modes of Residential BESS with Balcony-PV for Apartment Houses in Korea," Sustainability, MDPI, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:311-:d:473164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van der Stelt, Sander & AlSkaif, Tarek & van Sark, Wilfried, 2018. "Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances," Applied Energy, Elsevier, vol. 209(C), pages 266-276.
    2. Ratnam, Elizabeth L. & Weller, Steven R. & Kellett, Christopher M., 2015. "An optimization-based approach to scheduling residential battery storage with solar PV: Assessing customer benefit," Renewable Energy, Elsevier, vol. 75(C), pages 123-134.
    3. Mulleriyawage, U.G.K. & Shen, W.X., 2020. "Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study," Renewable Energy, Elsevier, vol. 160(C), pages 852-864.
    4. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    5. Yoon, Yourim & Kim, Yong-Hyuk, 2016. "Effective scheduling of residential energy storage systems under dynamic pricing," Renewable Energy, Elsevier, vol. 87(P2), pages 936-945.
    6. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings," Applied Energy, Elsevier, vol. 213(C), pages 11-21.
    7. Bingham, Raymond D. & Agelin-Chaab, Martin & Rosen, Marc A., 2019. "Whole building optimization of a residential home with PV and battery storage in The Bahamas," Renewable Energy, Elsevier, vol. 132(C), pages 1088-1103.
    8. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    9. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi & Vincenzo Stornelli, 2018. "Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis," Sustainability, MDPI, vol. 10(9), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    2. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    3. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    4. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    5. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    6. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Al Khafaf, Nameer & Rezaei, Ahmad Asgharian & Moradi Amani, Ali & Jalili, Mahdi & McGrath, Brendan & Meegahapola, Lasantha & Vahidnia, Arash, 2022. "Impact of battery storage on residential energy consumption: An Australian case study based on smart meter data," Renewable Energy, Elsevier, vol. 182(C), pages 390-400.
    8. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    9. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    10. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    11. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    12. Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A. & Nejlaoui, Mohamed, 2021. "Techno-economic evaluation of an off-grid health clinic considering the current and future energy challenges: A rural case study," Renewable Energy, Elsevier, vol. 169(C), pages 34-52.
    13. Toopshekan, Ashkan & Yousefi, Hossein & Astaraei, Fatemeh Razi, 2020. "Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy," Energy, Elsevier, vol. 213(C).
    14. Heine, Karl & Thatte, Amogh & Tabares-Velasco, Paulo Cesar, 2019. "A simulation approach to sizing batteries for integration with net-zero energy residential buildings," Renewable Energy, Elsevier, vol. 139(C), pages 176-185.
    15. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    16. Vaziri Rad, Mohammad Amin & Toopshekan, Ashkan & Rahdan, Parisa & Kasaeian, Alibakhsh & Mahian, Omid, 2020. "A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    17. Lee, J. & Bérard, Jean-Philippe & Razeghi, G. & Samuelsen, S., 2020. "Maximizing PV hosting capacity of distribution feeder microgrid," Applied Energy, Elsevier, vol. 261(C).
    18. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    19. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    20. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:311-:d:473164. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mdpi.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.