Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.06.095
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2017. "Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity," Applied Energy, Elsevier, vol. 188(C), pages 604-619.
- Oluleye, Gbemi & Jobson, Megan & Smith, Robin & Perry, Simon J., 2016. "Evaluating the potential of process sites for waste heat recovery," Applied Energy, Elsevier, vol. 161(C), pages 627-646.
- Milan, Christian & Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman, 2015. "Modeling of non-linear CHP efficiency curves in distributed energy systems," Applied Energy, Elsevier, vol. 148(C), pages 334-347.
- Karger, Cornelia R. & Hennings, Wilfried, 2009. "Sustainability evaluation of decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 583-593, April.
- Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005.
"Distributed generation: definition, benefits and issues,"
Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
- Guido Pepermans & Johan Driesen & Dries Haeseldonckx, 2003. "Distributed generation: definition, benefits and issues," Energy, Transport and Environment Working Papers Series ete0308, KU Leuven, Department of Economics - Research Group Energy, Transport and Environment.
- Acha, Salvador & Mariaud, Arthur & Shah, Nilay & Markides, Christos N., 2018. "Optimal design and operation of distributed low-carbon energy technologies in commercial buildings," Energy, Elsevier, vol. 142(C), pages 578-591.
- Oluleye, Gbemi & Smith, Robin, 2016. "A mixed integer linear programming model for integrating thermodynamic cycles for waste heat exploitation in process sites," Applied Energy, Elsevier, vol. 178(C), pages 434-453.
- Buoro, D. & Casisi, M. & De Nardi, A. & Pinamonti, P. & Reini, M., 2013. "Multicriteria optimization of a distributed energy supply system for an industrial area," Energy, Elsevier, vol. 58(C), pages 128-137.
- Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J. & Martín, F., 2016. "Optimal planning and operation of aggregated distributed energy resources with market participation," Applied Energy, Elsevier, vol. 182(C), pages 340-357.
- Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
- Kang, Lixia & Liu, Yongzhong, 2015. "Multi-objective optimization on a heat exchanger network retrofit with a heat pump and analysis of CO2 emissions control," Applied Energy, Elsevier, vol. 154(C), pages 696-708.
- Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
- Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
- Wu, Raphael & Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2017. "Multiobjective optimisation of energy systems and building envelope retrofit in a residential community," Applied Energy, Elsevier, vol. 190(C), pages 634-649.
- van de Bor, D.M. & Infante Ferreira, C.A. & Kiss, Anton A., 2015. "Low grade waste heat recovery using heat pumps and power cycles," Energy, Elsevier, vol. 89(C), pages 864-873.
- Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
- Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
- Cedillos Alvarado, Dagoberto & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2016. "A Technology Selection and Operation (TSO) optimisation model for distributed energy systems: Mathematical formulation and case study," Applied Energy, Elsevier, vol. 180(C), pages 491-503.
- Wei, Dajun & Chen, Alian & Sun, Bo & Zhang, Chenghui, 2016. "Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system," Energy, Elsevier, vol. 98(C), pages 296-307.
- Oluleye, Gbemi & Smith, Robin & Jobson, Megan, 2016. "Modelling and screening heat pump options for the exploitation of low grade waste heat in process sites," Applied Energy, Elsevier, vol. 169(C), pages 267-286.
- Steen, David & Stadler, Michael & Cardoso, Gonçalo & Groissböck, Markus & DeForest, Nicholas & Marnay, Chris, 2015. "Modeling of thermal storage systems in MILP distributed energy resource models," Applied Energy, Elsevier, vol. 137(C), pages 782-792.
- Kapustenko, Petro O. & Ulyev, Leonid M. & Boldyryev, Stanislav A. & Garev, Andrey O., 2008. "Integration of a heat pump into the heat supply system of a cheese production plant," Energy, Elsevier, vol. 33(6), pages 882-889.
- Omu, Akomeno & Choudhary, Ruchi & Boies, Adam, 2013. "Distributed energy resource system optimisation using mixed integer linear programming," Energy Policy, Elsevier, vol. 61(C), pages 249-266.
- Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2014. "A detailed MILP optimization model for combined cooling, heat and power system operation planning," Energy, Elsevier, vol. 74(C), pages 12-26.
- Miah, J.H. & Griffiths, A. & McNeill, R. & Poonaji, I. & Martin, R. & Leiser, A. & Morse, S. & Yang, A. & Sadhukhan, J., 2015. "Maximising the recovery of low grade heat: An integrated heat integration framework incorporating heat pump intervention for simple and complex factories," Applied Energy, Elsevier, vol. 160(C), pages 172-184.
- Ersoz, Ibrahim & Colak, Uner, 2016. "Combined cooling, heat and power planning under uncertainty," Energy, Elsevier, vol. 109(C), pages 1016-1025.
- Bakhtiari, Bahador & Fradette, Louis & Legros, Robert & Paris, Jean, 2010. "Opportunities for the integration of absorption heat pumps in the pulp and paper process," Energy, Elsevier, vol. 35(12), pages 4600-4606.
- Mariaud, Arthur & Acha, Salvador & Ekins-Daukes, Ned & Shah, Nilay & Markides, Christos N., 2017. "Integrated optimisation of photovoltaic and battery storage systems for UK commercial buildings," Applied Energy, Elsevier, vol. 199(C), pages 466-478.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
- Pina, Eduardo A. & Lozano, Miguel A. & Ramos, José C. & Serra, Luis M., 2020. "Tackling thermal integration in the synthesis of polygeneration systems for buildings," Applied Energy, Elsevier, vol. 269(C).
- Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2023. "From prosumer to flexumer: Case study on the value of flexibility in decarbonizing the multi-energy system of a manufacturing company," Papers 2301.07997, arXiv.org.
- Agyeman, Stephen Duah & Lin, Boqiang, 2022. "Nonrenewable and renewable energy substitution, and low–carbon energy transition: Evidence from North African countries," Renewable Energy, Elsevier, vol. 194(C), pages 378-395.
- Xu, Bin & Luo, Yuemei & Xu, Renjing & Chen, Jianbao, 2021. "Exploring the driving forces of distributed energy resources in China: Using a semiparametric regression model," Energy, Elsevier, vol. 236(C).
- Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2022. "Demand Response Analysis Framework (DRAF): An Open-Source Multi-Objective Decision Support Tool for Decarbonizing Local Multi-Energy Systems," Sustainability, MDPI, vol. 14(13), pages 1-38, June.
- Bohlayer, Markus & Bürger, Adrian & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2021. "Multi-period investment pathways - Modeling approaches to design distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 285(C).
- Théry Hétreux, Raphaële & Hétreux, Gilles & Floquet, Pascal & Leclercq, Alexandre, 2021. "The energy Extended Resource Task Network, a general formalism for the modeling of production systems:Application to waste heat valorization," Energy, Elsevier, vol. 214(C).
- Bohlayer, Markus & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2020. "Energy-intense production-inventory planning with participation in sequential energy markets," Applied Energy, Elsevier, vol. 258(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Zhigang Duan & Yamin Yan & Xiaohan Yan & Qi Liao & Wan Zhang & Yongtu Liang & Tianqi Xia, 2017. "An MILP Method for Design of Distributed Energy Resource System Considering Stochastic Energy Supply and Demand," Energies, MDPI, vol. 11(1), pages 1-23, December.
- Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
- Tian, Zhe & Niu, Jide & Lu, Yakai & He, Shunming & Tian, Xue, 2016. "The improvement of a simulation model for a distributed CCHP system and its influence on optimal operation cost and strategy," Applied Energy, Elsevier, vol. 165(C), pages 430-444.
- Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
- Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Liu, Xuezhi & Yan, Zheng & Wu, Jianzhong, 2019. "Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices," Applied Energy, Elsevier, vol. 248(C), pages 256-273.
- Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
- Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
- Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).
- Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
- Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
- Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
- Alberto Fichera & Mattia Frasca & Rosaria Volpe, 2020. "A cost-based approach for evaluating the impact of a network of distributed energy systems on the centralized energy supply," Energy & Environment, , vol. 31(1), pages 77-87, February.
- Acha, Salvador & Le Brun, Niccolo & Damaskou, Maria & Fubara, Tekena Craig & Mulgundmath, Vinay & Markides, Christos N. & Shah, Nilay, 2020. "Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector," Energy, Elsevier, vol. 206(C).
- Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
- Kumar, Prashant & Kishore, Ravi Anant & Maurya, Deepam & Stewart, Colin J. & Mirzaeifar, Reza & Quandt, Eckhard & Priya, Shashank, 2019. "Shape memory alloy engine for high efficiency low-temperature gradient thermal to electrical conversion," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
- Flores, Robert J. & Brouwer, Jacob, 2018. "Optimal design of a distributed energy resource system that economically reduces carbon emissions," Applied Energy, Elsevier, vol. 232(C), pages 119-138.
More about this item
Keywords
Distributed energy; Waste heat; Heat upgrading; CHP; MILP; Energy system planning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:327-343. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.