IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v285y2021ics0306261920317451.html
   My bibliography  Save this article

Multi-period investment pathways - Modeling approaches to design distributed energy systems under uncertainty

Author

Listed:
  • Bohlayer, Markus
  • Bürger, Adrian
  • Fleschutz, Markus
  • Braun, Marco
  • Zöttl, Gregor

Abstract

Multi-modal distributed energy system planning is applied in the context of smart grids, industrial energy supply, and in the building energy sector. In real-world applications, these systems are commonly characterized by existing system structures of different age where monitoring and investment are conducted in a closed-loop, with the iterative possibility to invest. The literature contains two main approaches to approximate this computationally intensive multi-period investment problem. The first approach simplifies the temporal decision-making process collapsing the multi-stage decision to a two-stage decision, considering uncertainty in the second stage decision variables. The second approach considers multi-period investments under the assumption of perfect foresight. In this work, we propose a multi-stage stochastic optimization model that captures multi-period investment decisions under uncertainty and solves the problem to global optimality, serving as a first-best benchmark to the problem. To evaluate the performance of conventional approaches applied in a multi-year setup, we propose a rolling horizon heuristic that on the one hand reveals the performance of conventional approaches applied in a multi-period set-up and on the other hand enables planners to identify approximate solutions to the original multi-stage stochastic problem. We conduct a real-world case study and investigate solution quality as well as the computational performance of the proposed approaches. Our findings indicate that the approximation of multi-period investments by two-stage stochastic approaches yield the best results regarding constraint satisfaction, while deterministic multi-period approximations yield better economic and computational performance.

Suggested Citation

  • Bohlayer, Markus & Bürger, Adrian & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2021. "Multi-period investment pathways - Modeling approaches to design distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317451
    DOI: 10.1016/j.apenergy.2020.116368
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920317451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Onishi, Viviani C. & Antunes, Carlos H. & Fraga, Eric S. & Cabezas, Heriberto, 2019. "Stochastic optimization of trigeneration systems for decision-making under long-term uncertainty in energy demands and prices," Energy, Elsevier, vol. 175(C), pages 781-797.
    2. Kumbartzky, Nadine & Schacht, Matthias & Schulz, Katrin & Werners, Brigitte, 2017. "Optimal operation of a CHP plant participating in the German electricity balancing and day-ahead spot market," European Journal of Operational Research, Elsevier, vol. 261(1), pages 390-404.
    3. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Comparison of alternative decision-making criteria in a two-stage stochastic program for the design of distributed energy systems under uncertainty," Energy, Elsevier, vol. 156(C), pages 709-724.
    4. Afzali, Sayyed Faridoddin & Cotton, James S. & Mahalec, Vladimir, 2020. "Urban community energy systems design under uncertainty for specified levels of carbon dioxide emissions," Applied Energy, Elsevier, vol. 259(C).
    5. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    6. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
    7. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.
    8. Narayan, Apurva & Ponnambalam, Kumaraswamy, 2017. "Risk-averse stochastic programming approach for microgrid planning under uncertainty," Renewable Energy, Elsevier, vol. 101(C), pages 399-408.
    9. Pecenak, Zachary K. & Stadler, Michael & Fahy, Kelsey, 2019. "Efficient multi-year economic energy planning in microgrids," Applied Energy, Elsevier, vol. 255(C).
    10. Markovic, Dragan & Cvetkovic, Dragan & Masic, Branislav, 2011. "Survey of software tools for energy efficiency in a community," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4897-4903.
    11. Bahl, Björn & Kümpel, Alexander & Seele, Hagen & Lampe, Matthias & Bardow, André, 2017. "Time-series aggregation for synthesis problems by bounding error in the objective function," Energy, Elsevier, vol. 135(C), pages 900-912.
    12. Yu, Jiah & Ryu, Jun-Hyung & Lee, In-beum, 2019. "A stochastic optimization approach to the design and operation planning of a hybrid renewable energy system," Applied Energy, Elsevier, vol. 247(C), pages 212-220.
    13. Schütz, Thomas & Schraven, Markus Hans & Fuchs, Marcus & Remmen, Peter & Müller, Dirk, 2018. "Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis," Renewable Energy, Elsevier, vol. 129(PA), pages 570-582.
    14. Boomsma, Trine Krogh & Juul, Nina & Fleten, Stein-Erik, 2014. "Bidding in sequential electricity markets: The Nordic case," European Journal of Operational Research, Elsevier, vol. 238(3), pages 797-809.
    15. Sharafi, Masoud & ElMekkawy, Tarek Y., 2015. "Stochastic optimization of hybrid renewable energy systems using sampling average method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1668-1679.
    16. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    17. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    18. Pickering, B. & Choudhary, R., 2019. "District energy system optimisation under uncertain demand: Handling data-driven stochastic profiles," Applied Energy, Elsevier, vol. 236(C), pages 1138-1157.
    19. Milan, Christian & Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman, 2015. "Modeling of non-linear CHP efficiency curves in distributed energy systems," Applied Energy, Elsevier, vol. 148(C), pages 334-347.
    20. Bohlayer, Markus & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2020. "Energy-intense production-inventory planning with participation in sequential energy markets," Applied Energy, Elsevier, vol. 258(C).
    21. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    22. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    23. Gamarra, Carlos & Guerrero, Josep M., 2015. "Computational optimization techniques applied to microgrids planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 413-424.
    24. Holger Heitsch & Werner Römisch, 2009. "Scenario tree reduction for multistage stochastic programs," Computational Management Science, Springer, vol. 6(2), pages 117-133, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saletti, Costanza & Morini, Mirko & Gambarotta, Agostino, 2022. "Smart management of integrated energy systems through co-optimization with long and short horizons," Energy, Elsevier, vol. 250(C).
    2. Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2022. "Demand Response Analysis Framework (DRAF): An Open-Source Multi-Objective Decision Support Tool for Decarbonizing Local Multi-Energy Systems," Sustainability, MDPI, vol. 14(13), pages 1-38, June.
    3. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    4. Richarz, Jan & Henn, Sarah & Osterhage, Tanja & Müller, Dirk, 2022. "Optimal scheduling of modernization measures for typical non-residential buildings," Energy, Elsevier, vol. 238(PA).
    5. Eva M. Urbano & Victor Martinez-Viol & Konstantinos Kampouropoulos & Luis Romeral, 2021. "Energy-Investment Decision-Making for Industry: Quantitative and Qualitative Risks Integrated Analysis," Sustainability, MDPI, vol. 13(12), pages 1-30, June.
    6. Yang, Kun & Zhu, Neng & Li, Yongzhao & Du, Na, 2021. "Effect of parameters on the melting performance of triplex tube heat exchanger incorporating phase change material," Renewable Energy, Elsevier, vol. 174(C), pages 359-371.
    7. Arne Jeppe & Heike Proff & Max Eickhoff, 2023. "Economic Potentials of Ecologically Attractive Multi-Life Products—The Example of Lithium-Ion Batteries," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    8. Hoettecke, Lukas & Schuetz, Thomas & Thiem, Sebastian & Niessen, Stefan, 2022. "Technology pathways for industrial cogeneration systems: Optimal investment planning considering long-term trends," Applied Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabrielli, Paolo & Fürer, Florian & Mavromatidis, Georgios & Mazzotti, Marco, 2019. "Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis," Applied Energy, Elsevier, vol. 238(C), pages 1192-1210.
    2. Pecenak, Zachary K. & Stadler, Michael & Mathiesen, Patrick & Fahy, Kelsey & Kleissl, Jan, 2020. "Robust design of microgrids using a hybrid minimum investment optimization," Applied Energy, Elsevier, vol. 276(C).
    3. Perera, A.T.D. & Khayatian, F. & Eggimann, S. & Orehounig, K. & Halgamuge, Saman, 2022. "Quantifying the climate and human-system-driven uncertainties in energy planning by using GANs," Applied Energy, Elsevier, vol. 328(C).
    4. Pickering, Bryn & Choudhary, Ruchi, 2021. "Quantifying resilience in energy systems with out-of-sample testing," Applied Energy, Elsevier, vol. 285(C).
    5. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
    6. Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
    7. Michael Stadler & Zack Pecenak & Patrick Mathiesen & Kelsey Fahy & Jan Kleissl, 2020. "Performance Comparison between Two Established Microgrid Planning MILP Methodologies Tested On 13 Microgrid Projects," Energies, MDPI, vol. 13(17), pages 1-24, August.
    8. Bohlayer, Markus & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2020. "Energy-intense production-inventory planning with participation in sequential energy markets," Applied Energy, Elsevier, vol. 258(C).
    9. Niu, Jide & Tian, Zhe & Lu, Yakai & Zhao, Hongfang & Lan, Bo, 2019. "A robust optimization model for designing the building cooling source under cooling load uncertainty," Applied Energy, Elsevier, vol. 241(C), pages 390-403.
    10. Wang, Meng & Yu, Hang & Lin, Xiaoyu & Jing, Rui & He, Fangjun & Li, Chaoen, 2020. "Comparing stochastic programming with posteriori approach for multi-objective optimization of distributed energy systems under uncertainty," Energy, Elsevier, vol. 210(C).
    11. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    12. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    13. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    14. Ghaemi, Zahra & Tran, Thomas T.D. & Smith, Amanda D., 2022. "Comparing classical and metaheuristic methods to optimize multi-objective operation planning of district energy systems considering uncertainties," Applied Energy, Elsevier, vol. 321(C).
    15. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    16. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    17. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    18. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    19. Thomas T. D. Tran & Amanda D. Smith, 2019. "Stochastic Optimization for Integration of Renewable Energy Technologies in District Energy Systems for Cost-Effective Use," Energies, MDPI, vol. 12(3), pages 1-26, February.
    20. Zhang, Chong & Xue, Xue & Du, Qianzhou & Luo, Yimo & Gang, Wenjie, 2019. "Study on the performance of distributed energy systems based on historical loads considering parameter uncertainties for decision making," Energy, Elsevier, vol. 176(C), pages 778-791.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.